www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Quadratische Kongruenz
Quadratische Kongruenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Kongruenz: Idee
Status: (Frage) beantwortet Status 
Datum: 12:30 Fr 08.11.2013
Autor: DrRiese

Aufgabe
Sei n>2 eine ungerade natürliche Zahl und p eine ungerade Primzahl.

a) Bestimmen Sie die Anzahl der Lösungen x der Kongruenz
              [mm] x^{2} \equiv [/mm] 1 mod [mm] p^{S} [/mm]
   für s [mm] \in \IN [/mm]

b) Bestimmen Sie die Anzahl der Lösungen von
              [mm] x^{2} \equiv [/mm] 1 mod n
  
c) Bestimmen Sie alle n, für welche die Kongruenz [mm] x^{2} \equiv [/mm] 1 mod n genau zwei Lösungen hat

Hallo liebe Forenmitglieder :-)

Habe zu dieser Aufgabe einen Ansatz, bin mir aber unsicher, ob dies nicht falsch gedacht ist...

a)

  [mm] x^{2} \equiv [/mm] 1 mod [mm] p^{S} [/mm]
[mm] \gdw x^{2}-1 \equiv [/mm] 0 mod [mm] p^{S} [/mm]
[mm] \gdw [/mm] (x+1)(x-1) [mm] \equiv [/mm] 0 mod [mm] p^{S} [/mm]
[mm] \gdw [/mm] x+1 [mm] \equiv [/mm] 0 mod [mm] p^{S} [/mm] oder x-1 [mm] \equiv [/mm] 0 mod [mm] p^{S} [/mm]
Also zwei Lösungen, nämlich x = [mm] \pm [/mm] 1

b)
[mm] x^{2} \equiv [/mm] 1 mod n
[mm] \gdw x^{2}-1 \equiv [/mm] 0 mod n
[mm] \gdw [/mm] (x-1)(x+1) [mm] \equiv [/mm] 0 mod n
[mm] \gdw [/mm] x-1 [mm] \equiv [/mm] 0 mod n oder x+1 [mm] \equiv [/mm] 0 mod n
Also zwei Lösungen, nämlich x = [mm] \pm [/mm] 1

Das wird wohl nicht ganz richtig sein, da ich keine der Voraussetzungen hier anwenden konnte....

Würde mich über Tipps freuen :-)

LG,
DrRiese

        
Bezug
Quadratische Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 08.11.2013
Autor: reverend

Hallo DrRiese,

die Grundidee ist gut, aber sie geht noch nicht ganz auf.

> Sei n>2 eine ungerade natürliche Zahl und p eine ungerade
> Primzahl.
>  
> a) Bestimmen Sie die Anzahl der Lösungen x der Kongruenz
>                [mm]x^{2} \equiv[/mm] 1 mod [mm]p^{S}[/mm]
>     für s [mm]\in \IN[/mm]
>  
> b) Bestimmen Sie die Anzahl der Lösungen von
>                [mm]x^{2} \equiv[/mm] 1 mod n
>    
> c) Bestimmen Sie alle n, für welche die Kongruenz [mm]x^{2} \equiv[/mm]
> 1 mod n genau zwei Lösungen hat
>  Hallo liebe Forenmitglieder :-)
>  
> Habe zu dieser Aufgabe einen Ansatz, bin mir aber unsicher,
> ob dies nicht falsch gedacht ist...
>  
> a)
>
> [mm]x^{2} \equiv[/mm] 1 mod [mm]p^{S}[/mm]
>  [mm]\gdw x^{2}-1 \equiv[/mm] 0 mod [mm]p^{S}[/mm]
>  [mm]\gdw[/mm] (x+1)(x-1) [mm]\equiv[/mm] 0 mod [mm]p^{S}[/mm]
>  [mm]\gdw[/mm] x+1 [mm]\equiv[/mm] 0 mod [mm]p^{S}[/mm] oder x-1 [mm]\equiv[/mm] 0 mod [mm]p^{S}[/mm]
>  Also zwei Lösungen, nämlich x = [mm]\pm[/mm] 1

Das ist zwar richtig, aber es nicht erkenntlich, wieso das nicht ganz allgemein (also wie auch in b) gelten sollte. Was ist die Besonderheit einer Primzahlpotenz?

> b)
>  [mm]x^{2} \equiv[/mm] 1 mod n
>  [mm]\gdw x^{2}-1 \equiv[/mm] 0 mod n
>  [mm]\gdw[/mm] (x-1)(x+1) [mm]\equiv[/mm] 0 mod n
>  [mm]\gdw[/mm] x-1 [mm]\equiv[/mm] 0 mod n oder x+1 [mm]\equiv[/mm] 0 mod n
>  Also zwei Lösungen, nämlich x = [mm]\pm[/mm] 1
>  
> Das wird wohl nicht ganz richtig sein, da ich keine der
> Voraussetzungen hier anwenden konnte....

Gegenbeispiele: [mm] 4^2\equiv 1\mod{15}, 34^2\equiv 1\mod{231} [/mm]

> Würde mich über Tipps freuen :-)

Da reicht einer für beide Teilaufgaben: chinesischer Restsatz.

Grüße
reverend

Bezug
                
Bezug
Quadratische Kongruenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:34 So 10.11.2013
Autor: DrRiese

Hi, danke für deine Antwort :-)

zu a)

Hm, so richtig weiss ich nicht, wie das mit dem chinesischen Restsatz gemacht werden soll..

Also wir haben die beiden Kongruenzgleichungen x+1 [mm] \equiv [/mm] 0 mod [mm] p^{S} [/mm] oder x-1 [mm] \equiv [/mm] 0 mod [mm] p^{S} [/mm]
Also könnte man das jetzt folgendermaßen schreiben:

[mm] \begin{cases}x \equiv -1 \mbox{mod } p^{S}\\ x \equiv 1 \mbox{mod } p^{S} \end{cases} [/mm]

So, dann [mm] p^{S}*p^{S}=p^{2S} [/mm] und nun Paare bilden [mm] (1,\bruch{p^{2S}}{p^{S}}),(-1, \bruch{p^{2S}}{p^{S}}) [/mm] = [mm] (1,p^{S}), (-1,p^{S}). [/mm]
[mm] ggT(1,p^{S})=1=(p^{2}+1)*1+(-1)*p^{S} [/mm]
[mm] ggT(-1,p^{S})=1=-(p^{2}+1)*(-1)+(-1)*p^{S} [/mm]

Lösung: [mm] 1*(-p^{S})+(-1)*(-p^{S})=0 [/mm]

Hm... ^^

LG,
DrRiese

Bezug
                        
Bezug
Quadratische Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 Di 12.11.2013
Autor: switchback

der chinese restsatz würde doch nur gehen wenn [mm] p^s [/mm] und [mm] p^s [/mm] teilferfremd wären, was wohl nicht der fall ist :p
Bezug
                        
Bezug
Quadratische Kongruenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 12.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de