www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Quadratur stückweise lin. Fkt.
Quadratur stückweise lin. Fkt. < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratur stückweise lin. Fkt.: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 13:15 Do 28.04.2005
Autor: ZoX

Hallo,
hab Probleme mit folgender Aufgabe:
Es soll eine stetige stückweise lineare Funktion integriert werden. Dazu stehen die n+1 Stützstellen [mm]x_{0} < x_{1} < ... < x_{n}[/mm] zur Verfügung. Diese stückweise lineare Funktion setzt sich dann eben aus Polynomen vom Grad höchstens eins auf den Teilintervallen [mm][x_{i-1},x_{i}), 1 \le i \le n[/mm] zusammen.

Zur Veranschaulichung ist dann noch ein Bildchen hingemalt worden, das so eine Zickzackfunktion zeigt, wobei die Stützstellen sich immer genau unter den Knickstellen befinden. Was denk ich so auch der obige Text beschreibt.

Nun soll erstmal ein Quadraturregel zur exakten Berechnung von [mm] \integral_{x_{0}}^{x_{n}} {f(x) dx}[/mm] erstellt werden. Dazu soll auf jedes der Teilintervalle die Trapezregel angewandt werden. Und dazu sollen die Gewichte [mm]g_{i}, 0 \le i \le n[/mm] zu Folgender Summe bestimmt werden:
[mm] \summe_{i=o}^{n} g_{i} f(x_{i}). [/mm] Nun soll man die Gewichte [mm] g_0, g_n,[/mm]  [mm]g_{j}, 1 \le j < n[/mm] angeben.
Ok, mein Problem ist jetzt, dass die Stützstellen nicht äquidistant sind. Sonst würd ich einfach die Gewichte aus der Trapezsumme herleiten. Also wäre dann:
[mm]g_{0} = g_{n} = \bruch{1}{2} * \left( \bruch{x_{n} - x_{0}}{n} \right)[/mm]
[mm]g_{j} = \left( \bruch{x_{n} - x_{0}}{n} \right), 1 \le j < n[/mm].
Aber da die Stützstellen ja nicht äquidistant sind geht, das ja nicht. Wie könnte man das lösen?

Als nächstes soll dann noch ein Quadraturregel gefunden werden, die mit nur n Stützstellen auskommt, und die wie oben so eine stückweise lineare Funktion exakt integrieren soll, aber diesmal ohne, dass die gesamte Funktion stetig ist.
Ich versteh aber nicht wie das gehen soll, denn auf irgendeine der [mm] x_i [/mm] Stützstellen muss ich jetzt verzichten, aber dabei verliere ich doch die Information der Funktionen auf den Teilintervallen [mm][x_{i-1},x_{i})[/mm] und [mm][x_{i},x_{i+1})[/mm]. Wie kann ich dann das Integral noch exakt berechnen?

Danke schonmal!

        
Bezug
Quadratur stückweise lin. Fkt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Fr 29.04.2005
Autor: mathemaduenn

Hallo Zox,
Leider hat sich in der von Dir vorgegebenen Zeit keiner gefunden der Deine Frage beantworten konnte. Falls Du noch an einer Antwort interessiert bist meld Dich nochmal.
viele Grüße
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de