www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Quadriken?
Quadriken? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadriken?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Fr 16.01.2009
Autor: kunzmaniac

Aufgabe
Q : p(x) = [mm] x_{1}^{2} [/mm] + [mm] 8x_{2}^{2} [/mm] − [mm] 6x_{1}x_{2} [/mm] + [mm] 128x_{1} [/mm] + [mm] 46x_{2} [/mm] − 129 = 0.

Bestimmen Sie die affine Normalform dieser Quadrik.

Wow, hier bin ich völlig aufgeschmissen, ich weiß, dass man diese Gleichung auch in Matrizenschreibweise darstellen kann (so haben wir Quadriken definiert, als konkretes Beispiel für die Anwendung der Hauptachsentransformation/Spektralsatz)
also in der Form
Q : [mm] x^{t}Ax [/mm] + [mm] b^{t}x [/mm] + c = 0 wobei b,x Spaltenvektoren, A symmetrische Matrix mit [mm] a_{ij} \not= [/mm] 0.
Wie komme ich von der Gleichung wieder auf die Matrixdarstellung, wie berechne ich die Normalform?

in der Aufgabe geht es ja wohl um [mm] \IR^{2}, [/mm] d.h. die Zielform wäre:

Q = [mm] \lambda x1^{2} [/mm] + [mm] \mu x2^{1} [/mm] + c

irgendwie müssen sich hier die gemischten Terme x1x2 eliminieren lassen, aber was hat das mit Translation und Drehung zu tun?

ich kann hier wirklich jede Hilfe gebrauchen! Vielen Dank.

        
Bezug
Quadriken?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Fr 16.01.2009
Autor: MathePower

Hallo kunzmaniac,

> Q : p(x) = [mm]x_{1}^{2}[/mm] + [mm]8x_{2}^{2}[/mm] − [mm]6x_{1}x_{2}[/mm] +
> [mm]128x_{1}[/mm] + [mm]46x_{2}[/mm] − 129 = 0.
>  
> Bestimmen Sie die affine Normalform dieser Quadrik.
>  Wow, hier bin ich völlig aufgeschmissen, ich weiß, dass
> man diese Gleichung auch in Matrizenschreibweise darstellen
> kann (so haben wir Quadriken definiert, als konkretes
> Beispiel für die Anwendung der
> Hauptachsentransformation/Spektralsatz)
>  also in der Form
> Q : [mm]x^{t}Ax[/mm] + [mm]b^{t}x[/mm] + c = 0 wobei b,x Spaltenvektoren, A
> symmetrische Matrix mit [mm]a_{ij} \not=[/mm] 0.
>  Wie komme ich von der Gleichung wieder auf die
> Matrixdarstellung, wie berechne ich die Normalform?


Zunächst einmal müssen die gemischtquadratischen Glieder verschwinden.

Dies erreicht man durch eine Transformation

[mm]x=Dx'[/mm]

,wobei [mm]D^{t}AD[/mm] dann eine Diagonalmatrix sein muß.

Die Matrix D kann zum Beispiel aus den Eigenvektoren
der zugehörigen Eigenwerte der Matrix A zusammengebastelt werden.

Durch eine Translation

[mm]x'=x''+u[/mm]

, wobei u der Translationsvektor ist,
erreicht man schliesslich die gewünschte Form.


>  
> in der Aufg,abe geht es ja wohl um [mm]\IR^{2},[/mm] d.h. die
> Zielform wäre:
>  
> Q = [mm]\lambda x1^{2}[/mm] + [mm]\mu x2^{1}[/mm] + c
>  
> irgendwie müssen sich hier die gemischten Terme x1x2
> eliminieren lassen, aber was hat das mit Translation und
> Drehung zu tun?


Durch eine Drehung lassen sich die gemischtquadratischn Glieder eliminieren.

Durch die Translation werden dann auch noch die linaren Glieder eliminiert.


>
> ich kann hier wirklich jede Hilfe gebrauchen! Vielen Dank.


Gruß
MathePower

Bezug
                
Bezug
Quadriken?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Fr 16.01.2009
Autor: kunzmaniac

wow, danke werde das gleich mal versuchen!

Bezug
                
Bezug
Quadriken?: translation
Status: (Frage) beantwortet Status 
Datum: 12:13 Sa 17.01.2009
Autor: kunzmaniac

So, die Drehung habe ich jetzt verstanden - vielen Dank nochmal!
ich bin jetzt bei einer Gleichung der Form:

[mm] a*x1^{2} [/mm] + [mm] b*x2^{2} [/mm] + c*x1 + d*x2 + e

jetzt müssen die linearen Summanden eliminiert werden, um die reinquadratische Form zu erhalten, das kann ich über quadratische ergänzung machen und hab dann einen Term der Form:

a*(x1 + [mm] b)^{2} [/mm] + c*(x2 + [mm] d)^{2} [/mm] + e

das war ja jetzt die Translation, nur - wie lese ich jetzt meinen Translationsvektor ab?



Bezug
                        
Bezug
Quadriken?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Sa 17.01.2009
Autor: MathePower

Hallo kunzmaniac,

> So, die Drehung habe ich jetzt verstanden - vielen Dank
> nochmal!
> ich bin jetzt bei einer Gleichung der Form:
>  
> [mm]a*x1^{2}[/mm] + [mm]b*x2^{2}[/mm] + c*x1 + d*x2 + e
>  
> jetzt müssen die linearen Summanden eliminiert werden, um
> die reinquadratische Form zu erhalten, das kann ich über
> quadratische ergänzung machen und hab dann einen Term der
> Form:
>  
> a*(x1 + [mm]b)^{2}[/mm] + c*(x2 + [mm]d)^{2}[/mm] + e
>  
> das war ja jetzt die Translation, nur - wie lese ich jetzt
> meinen Translationsvektor ab?
>  


Ich schreib das mal so:

[mm]a*(x1 + \tilde{b})^{2} + c*(x2 + \tilde{d})^{2}+ \tilde{e}[/mm]

Nun hast Du jetzt neue Variablen:

[mm]\tilde{x1}=x1+\tilde{b}[/mm]

[mm]\tilde{x2}=x2+\tilde{d}[/mm]

Demnach musst Du die Translation

[mm]x1=\tilde{x1}-\tilde{b}[/mm]

[mm]x2=\tilde{x2}-\tilde{d}[/mm]


auf die Gleichung

[mm]a*x1^{2} + b*x2^{2} + c*x1 + d*x2 + e[/mm]

anwenden

[mm]\pmat{-\tilde{b} \\ -\tilde{d}}[/mm] ist jetzt der Translationsvektor.


Gruß
MathePower  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de