www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Quadrupoltensor diagonal
Quadrupoltensor diagonal < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrupoltensor diagonal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 25.03.2009
Autor: Rutzel

Aufgabe
Wenn die Ladungsverteilung [mm] \rho(\vec{x}) [/mm] invariant unter Drehungen mit einem Winkel [mm] \alpha [/mm] < [mm] \pi [/mm] um die z-achse ist, dann ist der Quadrupoltensor diagonal und [mm] Q_{11}=Q_{22}=-Q_{33}/2 [/mm]

Hallo,

aus meiner linearen Algebra Vorlesung weiß ich noch, dass symmetrische Matrizen (der Quadrupoltensor ist klar symmetrisch) mit orthogonalen Matrizen diagonalisierbar sind. Orthogonale Matrizen sind gerade Drehungen und Spiegelungen. Also ist die Behauptung in der Aufgabe auch gezeigt.

Aber irgendwie bin ich damit nicht zufrieden. Lässt sich das nicht auf eine weniger abstrakte Weise, Physikerverträglich sozusagen, und besser zur Aufgabe passend zeigen?

Außerdem kann ich mit meinem Beweis auch nicht zeigen, dass [mm] Q_{11}=Q_{22}=-Q_{33}/2 [/mm] gilt.

Der Quadrupoltensor lautet:

[mm] Q_{ij}=\integral_{}{\rho(x')(3x_i'x_j'-r'^2\delta_{ij}) d^3x'} [/mm]

hieraus folgt schonmal klar, dass für alle Elemente, abseits der Diagonalen gilt:

[mm] Q_{ij}=\integral_{}{\rho(x')(3x_i'x_j') d^3x'} [/mm]

Aber kann man damit was anfangen? Wie bringe ich jetzt noch die Drehung um die z-Achse mit ins Spiel?

Gruß,
Rutzel

        
Bezug
Quadrupoltensor diagonal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Do 26.03.2009
Autor: Event_Horizon

Hallo!

Ich knabbere grade etwas an dieser Formulierung mit dem "invariant".

Ich interpretiere das so, daß man zwei unterschiedliche, zu z rotationssymmetrische Ladungsverteilungen hat, und daß für den ein einen Halbraum die eine und für den anderen die andere Verteilung vorliegt. Also so, wenn man das Koordinatensystem entsprechend wählt:

[mm] \rho(r, [/mm] z, [mm] \phi)=\begin{cases}\rho_0(r, z) & \text{für }0\le\phi<\pi\\\rho_\pi(r, z) & \text{für }\pi\le\phi<2\pi\end{cases} [/mm]


Wenn du dann zu Polarkoordinaten übergehst, teilst du das Integral entsprechend in zwei Teile für die Integration über [mm] \phi [/mm] .

ABER:  [mm] $\int_Rdr\int_Zdz\int_0^\pi d\phi \rho_0(r, [/mm] z)f(r, [mm] \phi) [/mm] + [mm] \int_Rdr\int_Zdz\int_\pi^{2\pi} d\phi \rho_\pi(r, [/mm] z)f(r, [mm] \phi)$ [/mm]

[mm] $=\int_Rdr\int_Zdz\left(\rho_0(r, z)\int_0^\pi d\phi f(r, \phi)+\rho_0(r, z)\int_\pi^{2\pi} d\phi f(r, \phi)\right)$ [/mm]

Wenn du jetzt bedenkst, daß dieses f für die Nebendiagonalenelemente sowas wie [mm] \sin(phi) [/mm] , [mm] \cos(\phi) [/mm] und [mm] \sin(phi)\cos(\phi) [/mm] enthält, müßtest du zeigen können, daß die =0 werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de