www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Quotientenkoerper
Quotientenkoerper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkoerper: Frage
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 18.05.2005
Autor: michael7

Hallo zusammen,

es geht um folgende Aufgabe:

Sei R ein nullteilerfreier, kommutativer Ring mit [mm] $1\ne0$. [/mm] Zeigen Sie:

In der Menge [mm] $R\times (R\setminus \{0\})$ [/mm] ist durch

[mm](a,b) \sim (a',b') \gdw ab' = a'b[/mm]

eine Aequivalenzrelation definiert. Wir schreiben [mm] $\frac{a}{b}$ [/mm] fuer die durch $(a,b)$ repraesentierte Aequivalenzklasse sowie

[mm]Q(R) := \left\{\frac{a}{b}|(a,b)\in R\times(R\setminus\{0\})\right\}[/mm]

fuer die Menge aller Aequivalenzklassen.

Jetzt sind wir beim Zeigen der Transitivitaet auf das Problem gestossen, dass wir nicht wissen, ob man die Division anwenden darf. Die Division entspricht doch der Multiplikation mit dem multiplikativen Inversen. Aber dieses existiert doch in obigem Ring ueberhaupt nicht. Also, darf man dividieren? Falls nicht, koennt ihr vielleicht einen Tipp geben, wie man die Transitivitaet sonst zeigen kann (alleine mit der Addition bzw. Subtraktion hat es nicht hingehauen)?

Danke, Michael

        
Bezug
Quotientenkoerper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Mi 18.05.2005
Autor: Sanshine

Hallo.
Du musst bei der Transitivität ein wenig basteln, dann geht es auch. Seien [mm] (a_1,b_1) [/mm] ~ [mm] (a_2,b_2) [/mm] und [mm] (a_2,b_2) [/mm] ~ [mm] (a_3,b_3). [/mm] Wobei per Definition deine [mm] b_i \not=0 [/mm] sind. Dann gilt: [mm] a_1b_2=a_2b_1 [/mm] und [mm] a_2b_3=a_3b_2. [/mm] Zeigen willst du ja, dass [mm] a_1b_3=a_3b_1 [/mm] gilt.
Dafür betrachtest du [mm] a_1b_2b_3=a_2b_1b_3=a_2b_3b_1=a_3b_2b_1. [/mm] Die Gleichheitszeichen 1 und 3 gelten hier nach Voraussetzung, das zweite wegen Kommutativität von R.
Wenn du diese Gleichung umformst erhälst du aber:
[mm] b_2(a_1b_3-a_3b_1)=0. [/mm] Jetzt musst du nur noch ausnutzen, dass [mm] b_2\not=0 [/mm] und R nullteilerfrei und du bist fertig.
Hoffe, ich konnte helfen.
Gruß, San

Bezug
                
Bezug
Quotientenkoerper: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Do 19.05.2005
Autor: michael7

Hallo,

>  Du musst bei der Transitivität ein wenig basteln,

schoen schoen. :-) Danke fuer Deine Hilfe!

Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de