www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - R-Integral mit character. Funk
R-Integral mit character. Funk < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Integral mit character. Funk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 02.07.2011
Autor: nhard

Aufgabe
A ist eine beliebige Teilmenge von [mm] $\IR$ [/mm] und [mm] $\chi_A(x):\IR\to\IR$ [/mm] die charakteristische Funktion von A mit:

[mm] $\chi_A(x)=\left\{\begin{matrix} 1, & \mbox{für }x\in A\mbox{ } \\ 0, & \mbox{für }x\not\in A\mbox{ } \end{matrix}\right.$ [/mm]

Die Funktion [mm] $f:\IR\to\IR$ [/mm] heißt R-integr auf A, wenn es [mm] $a,b\in\IR$ [/mm] gibt mit [mm] $A\subset[a,b]$ [/mm] und [mm] $f*\chi_A(x)$ [/mm] auf [mm] $\([a,b]$ [/mm] R-integr ist. Wir definieren in diesem Fall das Integral von [mm] $\(f$ [/mm] über [mm] $\(A$ [/mm] wie folgt:

[mm] $\int_{A}^{} f(x)\, dx:=\integral_{a}^{b} f(x)*\chi_A(x)\, [/mm] dx$

Zeigen sie:
Falls [mm] $A\subset[a,b]$ [/mm] , [mm] $A\subset[a',b']$ [/mm] und [mm] $f*\chi_A(x)$ [/mm] auf [a,b] R-integr. so ist [mm] $f*\chi_A(x)$ [/mm] auch auf $[a',b']$ R-integr. und es ist:
[mm] $\integral_{a}^{b} f(x)*\chi_A(x)\, dx=\integral_{a'}^{b'} f(x)*\chi_A(x)\, [/mm] dx$



Hallo liebes Forum ;)

Ich habe folgende Idee zu dieser Aufgabe:

Ich weiß, dass wenn eine Funktion auf [mm] $\([a,b]$ [/mm] R-integr. ist, gilt : [mm] $\limes_{\omega\rightarrow b}\integral_{a}^{\omega} f(x)\, dx=\integral_{a}^{b} f(x)\, [/mm] dx$

Da jetzt die Menge [mm] $\(A$ [/mm] offensichtlich eine beschränkte Teilmenge von [mm] $\IR$ [/mm] ist, besitzt sie also ein Infimum/Supremum (bzw Min/Max , inf/Max, Min/supr).

Für den Fall [mm] $\(A$ [/mm] besitzt ein Infimum/Supremum:

Setze [mm] $\xi:=inf\{A\}$ [/mm] und [mm] $\delta:=sup\{A\}$ [/mm] und [mm] $\beta\in [/mm] A$.

So ist:

[mm] $\integral_{a}^{b} f(x)*\chi_A(x)\, dx=\integral_{a}^{\xi} f(x)*\chi_A(x)\, dx+\limes_{\omega\rightarrow\xi}\integral_{\omega}^{\beta} f(x)*\chi_A(x)\,dx +\limes_{p\rightarrow\delta}dx\integral_{\beta}^{p} f(x)*\chi_A(x)\, dx+\integral_{\delta}^{b} f(x)*\chi_A(x)\, [/mm] dx$

Das erste und das letzte Integral ist offensichtlich 0, da für alle [mm] $\(x$ [/mm] aus [mm] $[a,\xi]$ [/mm] bzw [mm] $x\in[\delta,b]$ [/mm] gilt: [mm] $x\not\in [/mm] A [mm] \gdw \chi_A(x)=0$ [/mm] Die beiden Integrale in der Mitte fasse ich zu [mm] $\integral_{\xi}^{\delta} f(x)*\chi_A(x)\, [/mm] dx$ zusammen.

Das gleiche Spiel mach ich dann einfach mit dem Intervall $[a',b']$. Da auch hier bis [mm] $\xi$ [/mm] und ab [mm] $\delta$ [/mm] die Funktion konstant 0 ist und damit R-integrierbar (weil Stetig) folgt daraus:

[mm] $\integral_{a}^{b} f(x)*\chi_A(x)\, dx=\integral_{\xi}^{\delta} f(x)*\chi_A(x)\, dx=\integral_{a'}^{b'} f(x)*\chi_A(x)\, [/mm] dx$

Wenn die Argumentation von mir stimmen würde, würde ich das dann mit den anderen Fällen ähnlich machen, also angenommen A hätte Min/Max; Min/sup, inf/Max.

Ist das so in Ordnung oder habe irgendwie was falsch verstanden? Kommt mir so wenig Sinnvoll vor, das zu zeigen.

Vielen Dank und lg :)


        
Bezug
R-Integral mit character. Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 So 03.07.2011
Autor: Gonozal_IX

Huhu,

deine Idee ist ok, einzig der Sinn der Grenzwerte in der Zerlegung erschließt sich mir noch nicht ganz.

> Da jetzt die Menge [mm]\(A[/mm] offensichtlich eine beschränkte
> Teilmenge von [mm]\IR[/mm] ist, besitzt sie also ein
> Infimum/Supremum (bzw Min/Max , inf/Max, Min/supr).
>  
> Für den Fall [mm]\(A[/mm] besitzt ein Infimum/Supremum:
>
> Setze [mm]\xi:=inf\{A\}[/mm] und [mm]\delta:=sup\{A\}[/mm] und [mm]\beta\in A[/mm].

Jop.
  

> So ist:
>  
> [mm]\integral_{a}^{b} f(x)*\chi_A(x)\, dx=\integral_{a}^{\xi} f(x)*\chi_A(x)\, dx+\limes_{\omega\rightarrow\xi}\integral_{\omega}^{\beta} f(x)*\chi_A(x)\,dx +\limes_{p\rightarrow\delta}dx\integral_{\beta}^{p} f(x)*\chi_A(x)\, dx+\integral_{\delta}^{b} f(x)*\chi_A(x)\, dx[/mm]

Die Zerlegung mein ich, warum nicht gleich:

[mm] $\integral_{a}^{b} f(x)*\chi_A(x)\, [/mm] dx = [mm] \integral_{a}^{\xi} f(x)*\chi_A(x)\, [/mm] dx + [mm] \integral_{\xi}^{\delta} f(x)*\chi_A(x)\, [/mm] dx + [mm] \integral_{\delta}^{b} f(x)*\chi_A(x)\, [/mm] dx = 0 + [mm] \integral_{\xi}^{\delta} f(x)*\chi_A(x)\, [/mm] dx + 0$

Naja, und das ist für jedes kompakte Intervall, dass A überdeckt, gleich.

MFG,
Gono.

Bezug
                
Bezug
R-Integral mit character. Funk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mo 04.07.2011
Autor: nhard

Hallo Danke für deine Antwort!!

Also die Grenzwerte habe ich deswegen, weil ich ja davon ausgehe, dass die Menge A nur ein Supremum [mm] ($\delta$) [/mm] bzw ein Infimum [mm] ($\xi$). [/mm] Die sind ja dann nicht Element von A, also wollte ich das quasi dadurch zeigen, dass ich die Grenzwerte davor schreibe. Das Beta habe ich dann deswegen eingefügt, weil ich nicht insgesamt zwei Grenzwerte (für die obere und untere Grenze) haben wollte.

Rein formal gesehen ist das aber i.O.?

Vielen Dank für deine Hilfe!
Gruß

Bezug
                        
Bezug
R-Integral mit character. Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mo 04.07.2011
Autor: Gonozal_IX

Huhu,

> Also die Grenzwerte habe ich deswegen, weil ich ja davon
> ausgehe, dass die Menge A nur ein Supremum ([mm]\delta[/mm]) bzw ein
> Infimum ([mm]\xi[/mm]). Die sind ja dann nicht Element von A

das macht beim Riemann-Integral aber gar nix. Dort kannst du ja endlich viele Punkte hinzunehmen, ohne den Wert des Integrals zu ändern.
Insbesondere ist der Wert beim [mm] \inf [/mm] oder [mm] \sup [/mm] ja eh Null, wenns nicht dazugehört.

> Rein formal gesehen ist das aber i.O.?

Hm... ja, aber mit Kanonen auf Spatzen geschossen....

MFG,
Gono.


Bezug
                                
Bezug
R-Integral mit character. Funk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Mo 04.07.2011
Autor: nhard

Alles klar, dankeschön :)

Schönen Abend noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de