www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Krypto,Kodierungstheorie,Computeralgebra" - RSA - Verfahren
RSA - Verfahren < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RSA - Verfahren: Korrektur+Tipp
Status: (Frage) beantwortet Status 
Datum: 12:35 Mi 24.10.2012
Autor: susiii

hallo :)

Ich schreibe mein Seminararbeit über Primzahlen, darunter auch, als praktische Anwendung, ein Kapitel über das RSA-Verfahren. Nun habe ich versucht, dass RSA-Verfahren an einfachen Zahlen auszuprobieren. Doch ich komme bei der Berechnung des Dechiffrierschlüssels nicht weiter.
Bisher habe ich gerechnet:
zwei Primzahlen p = 7 und q = 11
daraus folgt n= p*q= 77 und phi(n) = 60
außerdem  a=8 festgelegt
verschlüsselt soll die zahl x= 12 werde
-> y= [mm] x^{a} [/mm] (mod n)  
   y= [mm] 12^{8} [/mm] (mod 77)  
   y= 61
Stimmen meine Berechnungen bisher?
nun soll der Dechiffrierschlüssel bestimmt werden mit:
ab (mod m) = 1
b= [mm] \bruch{1+k*m}{a} [/mm]
b= [mm] \bruch{1+k*60}{8} [/mm]
wobei k [mm] \in \IN [/mm] und so gewählt werden muss, dass auch b [mm] \in \IN. [/mm]
Hier stehe ich auf dem schlauch. Wie kann k berechnet werden?
Wäre sehr super wenn mir jemand einen Tipp geben könnte.
Viele Dank im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
RSA - Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 24.10.2012
Autor: felixf

Moin!

> Ich schreibe mein Seminararbeit über Primzahlen, darunter
> auch, als praktische Anwendung, ein Kapitel über das
> RSA-Verfahren. Nun habe ich versucht, dass RSA-Verfahren an
> einfachen Zahlen auszuprobieren. Doch ich komme bei der
> Berechnung des Dechiffrierschlüssels nicht weiter.
> Bisher habe ich gerechnet:
> zwei Primzahlen p = 7 und q = 11
>  daraus folgt n= p*q= 77 und phi(n) = 60
>  außerdem  a=8 festgelegt
>  verschlüsselt soll die zahl x= 12 werde
>  -> y= [mm]x^{a}[/mm] (mod n)  

> y= [mm]12^{8}[/mm] (mod 77)  
> y= 61
>  Stimmen meine Berechnungen bisher?

Nicht ganz: [mm] $12^8$ [/mm] modulo 77 ist 67 und nicht 61.

> nun soll der Dechiffrierschlüssel bestimmt werden mit:
> ab (mod m) = 1

So ein $b$ gibt es fuer gegebenes $a$ nur dann, wenn $a$ und $m$ teilerfremd sind. Das ist bei dir nicht der Fall, da 60 und 8 nicht teilerfremd sind. Das kannst du auch hier sehen:

>  b= [mm]\bruch{1+k*m}{a}[/mm]
>  b= [mm]\bruch{1+k*60}{8}[/mm]

Damit ist $b = [mm] \frac{1}{8} [/mm] + [mm] \frac{15 k}{2}$. [/mm] Dies kann aber fuer ganzzahliges $k$ niemals eine ganze Zahl werden, da der Nenner von [mm] $\frac{15 k}{2}$ [/mm] niemals 8 werden kann.

LG Felix


Bezug
                
Bezug
RSA - Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Mi 24.10.2012
Autor: susiii

Danke für die schnelle Antwort!
Ich hab übersehen, dass a und m teilfremd sein müssen.
Aber jetzt habe ich's verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de