www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Radizieren komplexer Zahlen
Radizieren komplexer Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radizieren komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Sa 03.11.2007
Autor: bluescience

Aufgabe
Berechne die n-te Wurzel der folgenden komplexen Zahlen:

a) [mm] \wurzel[6]{-1} [/mm]

b) [mm] \wurzel[5]{-16-16i} [/mm]

c) [mm] \wurzel{-3+4i} [/mm]

Kann mir jemand bei der Lösung der Aufgaben helfen? Ich habe gerade mein Physikstudium begonnen und kämpfe im Moment mit Mathe. Soweit ich verstanden habe, muss ich, um die Wurzel einer komplexen zahl zu berechnen, diese in exponentialform umschreiben. ich weiss aber nicht genau, wie das geht und was man danch machen muss.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Radizieren komplexer Zahlen: Komplexe Zahlen
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 03.11.2007
Autor: Infinit

Hallo bluescience,
für komplexe Zahlen gibt es zwei Darstellungsmöglichkeiten, einmal mit Hilfe kartesischer Koordinaten und dann mit der Hilfe von Polarkoordinaten.
Bei kartesischen Koordinaten gilt:
$$ z = x + iyß, , $$ bei Polarkoordinaten
$$ z = r [mm] \cdot {\rm e}^{j \varphi} [/mm] = r [mm] \cdot [/mm] ( [mm] \cos \varphi [/mm] + j [mm] \sin \varphi [/mm] ) [mm] \, [/mm] . $$
Die Zusammenhänge lauten:
$$ r = [mm] \wurzel{x^2 + y^2}\, [/mm] ; [mm] \varphi [/mm] = [mm] \arctan{(\bruch{y}{x}}) \, [/mm] . $$
Für das Wurzelziehen formt man die kompexe Zahl in Polarkoordinaten um und muss nur noch berücksichtigen, dass  der Winkel der Ergebnisse mehrdeutig ist.
$$ [mm] \wurzel[n]{z}=r^{\bruch{1}{n}} \cdot [/mm] ( [mm] \cos (\bruch{\varphi}{n} [/mm] + k [mm] \bruch{2 \pi}{n} [/mm] ) + j [mm] \sin (\bruch{\varphi}{n} [/mm] + k [mm] \bruch{2 \pi}{n} [/mm] ) ) $$ mit k = 0 , ..., n-1. Eine komplexe Wurzel n-ten Grades hat also n Lösungen, die auf einem Kreis mit dem Radius [mm] r^{\bruch{1}{n}} [/mm] liegen.
Viel Spaß beim Rechnen,
Infinit

Bezug
                
Bezug
Radizieren komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 05.11.2007
Autor: bluescience

Hi Infinit,

danke für deine Hilfe.
ich habe dementsprechend folgende Lösungen erhalten:

a) [mm] z_0 [/mm] = 1 cis 0°
[mm] z_1 [/mm] = 1 cis 60°
[mm] z_2 [/mm] = 1 cis 120°
[mm] z_3 [/mm] = 1 cis 180°
[mm] z_4 [/mm] = 1 cis 240°
[mm] z_5 [/mm] = 1 cis 300°

b) [mm] z_0 [/mm] = 1,866 cis 9°
   [mm] z_1 [/mm] = 1,866 cis 81°
   [mm] z_2 [/mm] = 1,866 cis 153°
   [mm] z_3 [/mm] = 1,855 cis 225°
   [mm] z_4 [/mm] = 1,866 cis 297°

c) [mm] z_0 [/mm] = [mm] \wurzel{5} [/mm] cis 26,565°
   [mm] z_1 [/mm] = [mm] \wurzel{5} [/mm] cis 206,565°

ich bin mir aber nicht sicher, ob das wirklich stimmt oder ob ich das Prinzip doch nicht richtig verstanden habe. Könntest du mir sagen, ob das ungefähr hinkommt?
darf man die Werte so angeben wenn in der Aufgabenstellung nichts weiter dazu steht, oder müssen die umgeschrieben werden (z.B. in Exponentialform)?

Bezug
                        
Bezug
Radizieren komplexer Zahlen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 05.11.2007
Autor: Roadrunner

Hallo bluescience!


Da ist aber so einiges im argen. Ich zeige Dir das mal am Beispiel der 1. Aufgabe mit [mm] $\wurzel[6]{-1}$ [/mm] .

Zunächst die "Vorwerte":

$$|-1| \ = \ |-1+0*j| \ = \ [mm] \wurzel{(-1)^2+0^2} [/mm] \ = \ 1$$
[mm] $$\tan(\varphi) [/mm] \ = \ [mm] \bruch{0}{-1} [/mm] \ = \ 0 \ \ [mm] \Rightarrow [/mm] \ \ \ \ [mm] \varphi [/mm] \ = \ 180° \ [mm] \hat= [/mm] \ [mm] \pi$$ [/mm]
(Den Winkel auch immer anhand der Gauß'schen Zahlenebene klarmachen!).


[mm] $$\wurzel[n]{z} [/mm] \ = \ [mm] z^{\bruch{1}{n}} [/mm] \ = \ [mm] r^{\bruch{1}{n}}*\left[\sin\left(\bruch{\varphi+k*360°}{n}\right)+j*\cos\left(\bruch{\varphi+k*360°}{n}\right)\right]$$ [/mm]

[mm] $$z_0 [/mm] \ = \ [mm] \wurzel[6]{1}*\left[\sin\left(\bruch{180°+0*360°}{6}\right)+j*\cos\left(\bruch{180°+0*360°}{6}\right)\right] [/mm] \ = \ [mm] 1*\left[\sin\left(30°\right)+j*\cos\left(30°\right)\right] [/mm] \ = \ [mm] \bruch{1}{2}+j*\bruch{\wurzel{3}}{2} [/mm] \ [mm] \approx [/mm] \ 0.5+0.866*j$$
[mm] $$z_1 [/mm] \ = \ [mm] \wurzel[6]{1}*\left[\sin\left(\bruch{180°+1*360°}{6}\right)+j*\cos\left(\bruch{180°+1*360°}{6}\right)\right] [/mm] \ = \ [mm] 1*\left[\sin\left(90°\right)+j*\cos\left(90°\right)\right] [/mm] \ = \ 1+j*0 \ = \ 1$$
usw.

Auch bei den anderen Aufgaben mal den jeweiligen Betrag $r_$ überprüfen ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de