www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Random-Walk
Random-Walk < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Random-Walk: vorgehensweise?
Status: (Frage) beantwortet Status 
Datum: 18:14 Mi 01.11.2006
Autor: Lee1601

Aufgabe
Ein Betrunkener bewegt sich auf einer geraden Linie in jeder Minute um genau eine Meter nach Norden oder nach Süden. In welche Richtung er sich bewegt, ist vom Zufall abhängig. Die Wahrscheinlichkeit für die Ereignisse "er bewegt sich in der n-ten Minute einen Meter nach Norden" und "...Süden" haben für jedes n [mm] \in [/mm] IN die Wahrscheinlichkeit 1/2.
Wie groß ist die Wahrscheinlichkeit, dass der Betrunkene nach 2m (m [mm] \in [/mm] IN) Minuten wieder an seinem Ausgangspunktsteht?
(Tipp: Wie viele Pfade mit 2m Schritten gibt es? Welche Bedingung an die Anzahl der Nord- bzw. Südschritte braucht man, um wieder nach 0 zu kommen?)

Hallo!

Wir wissen nicht wirklich, wie man bei der Aufgabe vorgehen muss.
Die Bedingung ist ja klar - es müssen gleichviele Nord- bzw Südschritte sein. Für die Anzahl der Pfade: Wir haben eine Beispielzeichnung mit 16 Schritten. Dann gibt es ja einmal 16 Schritte (8N und 8S), 2mal einen Pfad mit 8 Schritten (4N und 4S), 4 Pfade mit 4 Schritten (2N und 2S) und 8 Pfade mit 2 Schritten (1N und 1S). Aber wie muss ich jetzt weitermachen? Unser Tutor meinte irgendwas von "warum sind alle Pfade gleichwahrscheinlich?" und "wie viele günstige Schritte gibt es?". Damit können wir nur leider nichts anfangen.

Kann uns jemand erklären, wie man hier vorgeht?

Vielen Dank schonmal!

LG

Lee

        
Bezug
Random-Walk: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 01.11.2006
Autor: DirkG

Von den $2m$ Schritten führen genau $m$ nach Norden. Aber an welchen Zeitpunkten von 1 bis $2m$ diese $m$ Schritte durchgeführt werden, ist völlig frei.
Das ist also eine Auswahlgeschichte, von $m$ Zeitpunkten aus $2m$ in Frage kommenden Zeitpunkten...

Oder alternativ, falls du schon mal was von Binomialverteilung gehört hast: Die Anzahl $N$ der Nordschritte ist binomialverteilt [mm] $N\sim B\left( 2m,\frac{1}{2}\right)$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de