www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Random walk Markov Kette
Random walk Markov Kette < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Random walk Markov Kette: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Do 26.05.2011
Autor: Mr.Teutone

Hallo, in einem Buch steht:

--------------------------------
Consider a simple random walk on [mm] $\{0,1,2,\ldots,n\}$ [/mm] conditioned to reach $n$ before $0$. By Bayes' rule, this conditioned process is a Markov chain with the following transition probabilities: [mm] $\hat{p}(0,1)=1$ [/mm] and for [mm] $1\le k\le [/mm] n$,
[mm] \[\hat{p}(k,k+1)=\frac{k+1}{2k},\quad \hat{p}(k,k-1)=\frac{k-1}{2k}.\] [/mm]
--------------------------------

Das kapiere ich aber nicht, denn warum kann ich statt der letzten Zeile nicht einfach schreiben:
[mm] \[\hat{p}(k,k+1)=\frac{1}{2},\quad \hat{p}(k,k-1)=\frac{1}{2}.\] [/mm]

Also das Ding springt gleichwahrscheinlich von $k$ aus eins nach oben oder nach eins nach unten... Wo ist mein Denkfehler?

        
Bezug
Random walk Markov Kette: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 26.05.2011
Autor: Blech

Hi,

des Rätsels Lösung wird in

"conditioned to reach $ n $ before $ 0 $"

liegen, wobei ich keine Ahnung habe, wie der Autor das definiert hat.


Nachdem aber $p(1,2)=1$ ist, können wir von 1 nicht zurück zur 0 springen und damit erreichen wir n sicher vor der 0. Weit von der 0 weg, verhält es sich wie ein balancierter random walk, aber umso näher wir der 0 sind, desto stärker werden wir abgestoßen.

ciao
Stefan

Bezug
                
Bezug
Random walk Markov Kette: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:31 Do 26.05.2011
Autor: Mr.Teutone

Erstmal vielen Dank für deine Antwort.

Was der Autor genau meint, wird wohl sein Geheimnis bleiben und ich nehme das einfach mal als Definition für "conditioned" hin, auch wenn ich gern wüsste, wieso er da mit Bayes ankommt?

Ansonsten spielt, wie du schon angemerkt hast,  [mm] $n\to\infty$ [/mm] eine Rolle, da er dann einen "simple random walk on [mm] $\mathbb{N}$ [/mm] conditioned to avoid zero" definiert...

Naja, ich mach mal noch ne genaue Quellenangabe, falls dir oder jemand anderem noch was einfällt:

[]Formel (5.13) Seite 140 bzw. pdf-Seite 150

Bezug
                        
Bezug
Random walk Markov Kette: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 03.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de