www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang
Rang < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Do 04.12.2008
Autor: Arina

Aufgabe
Seien A,B Matrizen mit Einträgen aus einem Körper, so dass A*B definiert ist.
Untersuchen Sie, ob folgende Aussagen wahr sind:
(i) rg(A*B) [mm] \le [/mm] rg(A)
(ii) rg (A*B) [mm] \le [/mm] rg(B)

Hallo zusammen!
Die Aussagen sind doch falsch, oder?
Ich habe Paar Beispielen gemacht, und die zeigen mir, dass der Rang des Produkts größer gleich Rang von A bzw. von B ist? Stimmt das, dass die zwei Aussagen falsch sind????
Gruß, Arina

        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 04.12.2008
Autor: Herby

Hallo,

im allg. gilt:  [mm] Rang(A\* B)\le min\{Rang(A),Rang(B\} [/mm]


Liebe Grüße
Herby

Bezug
                
Bezug
Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 04.12.2008
Autor: Arina

danke schön für deine Anwort!
aber wie kann ich das zeigen? weil wenn ich i-welche matrizen nehme, dann geht bei mir, dass der rang des produkts größer oder gleich dem rang von A bzw. von B ist, und das widerspricht doch....

Bezug
                        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 04.12.2008
Autor: fred97


> danke schön für deine Anwort!
>  aber wie kann ich das zeigen? weil wenn ich i-welche
> matrizen nehme, dann geht bei mir, dass der rang des
> produkts größer oder gleich dem rang von A bzw. von B ist,
> und das widerspricht doch....



Nein. Aussage (1): [mm] a\le [/mm] b.      Aussage (2)  a [mm] \ge [/mm] b.

Widersprechen sich diese beiden Aussagen ?

FRED

Bezug
                                
Bezug
Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 04.12.2008
Autor: Arina

was für (1) und (2)?????
ich muss die zwei aussagen untersuchen:
rg(a*b)<= rg (a)
rg(a*b)<= rg (b)

und wenn ich z.B die a= (1 5
                         2 2
                         3 1)
und die b= (1 2 3 5 1
            2 4 3 1 3)
betracht, dann kommt raus
a*b= (11 22 18 10 16
      5  12 12 12  8
      5  10 12 16  9)

=>  2=rg(a) < rg(a*b)=5

und das widerspricht doch der Aussage!!!

Bezug
                                        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Do 04.12.2008
Autor: Herby

Hallo [hand]

bin wieder da.

> was für (1) und (2)?????

>  ich muss die zwei aussagen untersuchen:
>  (1)  rg(a*b)<= rg (a)
>  (2)  rg(a*b)<= rg (b)

genau, nämlich (1) und (2) ;-)


Wenn du jetzt noch meinen Spruch von vorhin dazu nimmst, dann ergibt auch sicher die Aussage von Fred einen Sinn für dich - wir ergänzen uns quasi (ähm - nicht oft, aber manchmal)

[mm] $Rang(A\*B)\ \le\ [/mm] min\ [mm] \{Rang(A),Rang(B)\}$ [/mm]

Dann ist bei (1)  $a\ [mm] \le\ [/mm] b$
und bei (2)  $b\ [mm] \le\ [/mm] a$

mit a bzw. b ist abkürzend der Rang gemeint

Nun klarer?

>  
> und wenn ich z.B die a= (1 5
>                           2 2
>                           3 1)
>  und die b= (1 2 3 5 1
> 2 4 3 1 3)
>  betracht, dann kommt raus
>  a*b= (11 22 18 10 16
>        5  12 12 12  8
>        5  10 12 16  9)
>  
> =>  2=rg(a) < rg(a*b)=5

kleiner mistake :-)  Du hast als Produkt eine 3x5-Matrix - und wir wissen aus der Vorlesung, dass der Rang eine Matrix maximal was sein kann???

Genau, also fällt die 5 schon mal ins Wasser. Bringst du das Ding auf Zeilenstufenform, dann bekommst du schnell in der letzten Zeile ein 00000-Reihe. Ergo: Rang 2 und alles ist im grünen Bereich.


Liebe Grüße
Herby

Bezug
                                                
Bezug
Rang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Fr 05.12.2008
Autor: Arina

Vielen vielen Dank!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de