www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang bestimmen
Rang bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:37 Mi 03.12.2008
Autor: Fablisa

Aufgabe
A sei eine m x n -Matrix mit Einträgen im Körper Kund k sei [mm] \le [/mm] m,n.
Streicht man aus A nun m-k Zeilen und n-k Spalten, so bleibt eine quatratische Matrix vom Format k xk übrig. Deren Determinante heißt eine k-Unterdeterminante von A. Man beweise: Der Rang von A ist das maximale k, für welches eine k Unterdeterminante [mm] \not= [/mm] existiert.

Ich habe meine Frage  auf keine anderen Internetseiten gestellt

zu zeigen:

Rang von A ist k.
Das heisst, k ist schonmal ungleich Null, denn wenn k Null wäre, dann wäre sonst die Matrix aufgelöst.

Wie man das k hier bestimmen kann weiss ich leider nicht, hier bräuchte ich für den Anfang Hilfe.
Eine Unterdeterminante entsteht ja durch das Streichen m-k Spalten und n- k Zeilen.

Mir fehlt die Hand zu mathematischen Argumantation, deshalb bitte ich um Hilfe.

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Rang bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Mi 03.12.2008
Autor: reverend

Man beweise: Der Rang von A ist das maximale k, für welches eine k-Unterdeterminante [mm] \not=\red{0} [/mm] existiert.

Diese wesentliche Information wolltest Du uns doch bestimmt nicht vorenthalten...

Es genügt, zwei Dinge zu zeigen:
1) Für [mm] k\le \Rg{A} [/mm] existiert mindestens eine k-Unterdeterminante [mm] \not={0}. [/mm]
2) Für [mm] k>\Rg{A} [/mm] sind alle k-Unterdeterminanten [mm] \a{}=0. [/mm]
editiert: in 2 muss es natürlich "größer" heißen, nicht "größer oder gleich".

Fang erst einmal mit [mm] n\times{n} [/mm] -Matrizen an, die sind noch leichter zu überblicken. Der Übergang auf [mm] m\times{n} [/mm] -Matrizen mit [mm] m\not=(n) [/mm] ist später nicht schwierig.

Bezug
                
Bezug
Rang bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Mi 03.12.2008
Autor: Fablisa

Vielen Dank für die Informationen,die werde ich aml versuchen umzusetzen.
Leider muss ich aber für morgen andere Aufgaben lösen, daher kann ich mich hiermit erst morgen Abend beschäftigen.
Aber ein großes Lob an diese Seite, die " Hilfe zur Selbsthilfe" ist hier wirklich gut !


Viele Grüße

Fablisa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de