www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Ratenzahlung
Ratenzahlung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ratenzahlung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:54 So 11.02.2007
Autor: Christian0112

Aufgabe
Der Barwert einer Maschine beträgt 350.000 Euro. Folgende Zahlungsbedingung wird vereinbart: sofortige Anzahlung 210.000 und der Rest in 3 Jahren. Die 1.Rate ist nach 2 Jahren, die 2.Rate ist nach 4 Jahren und die 3.Rate ist nach 6 Jahren fällig. Wieviel Euro beträgt die Rate, wenn mit 6,5% gerechnet wird?

Würde mich freuen wenn mir hier jemand weiterhelfen könnte! Wäre super, wenn leichtverständliche Formeln verwendet werden könnten (Abi/Fachabi Nivaue). Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ratenzahlung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 So 11.02.2007
Autor: VNV_Tommy

Hallo Christian!

[willkommenmr]

> Der Barwert einer Maschine beträgt 350.000 Euro. Folgende
> Zahlungsbedingung wird vereinbart: sofortige Anzahlung
> 210.000 und der Rest in 3 Jahren. Die 1.Rate ist nach 2

Rest in 3 Jahren? Ich denke du meinst in 3 Raten, oder? ;-)

> Jahren, die 2.Rate ist nach 4 Jahren und die 3.Rate ist
> nach 6 Jahren fällig. Wieviel Euro beträgt die Rate, wenn
> mit 6,5% gerechnet wird?
>  Würde mich freuen wenn mir hier jemand weiterhelfen
> könnte! Wäre super, wenn leichtverständliche Formeln
> verwendet werden könnten (Abi/Fachabi Nivaue). Vielen
> Dank!

Den Barwert berechnest du im allgemeinen, indem du die einzelnen Zahlungen über die Laufzeit auf den heutigen Zeitpunkt abzinst. Es gilt:

[mm] BW=AZ+\bruch{Z1}{(1+Zins)^{1}}+\bruch{Z2}{(1+Zins)^{2}}+\bruch{Z3}{(1+Zins)^{3}}+...+\bruch{Zn}{(1+Zins)^{n}} [/mm]

BW...Barwert
AZ...Anfangszahlung (entspricht der Zahlung im Jahr n=0)
Z1..Zahlung im Jahr 1 (analog dazu Z2, Z3, Zn)
Zins...Vergleichzins zu dem die Zahlungen diskontiert (abgezinst) werden.

In deinem Fall (wir gehen von konstanten Jahreszahlungen Z aus) gilt:

[mm] 350.000=210.000+\bruch{Z}{(1+0,065)^{2}}+\bruch{Z}{(1+0,065)^{4}}+\bruch{Z}{(1+0,065)^{6}} [/mm]

Diese Gleichung musst du nun nur noch nach Z auflösen und schon weisst du wie groß die einzelnen Raten sind.

Gruß,
Tommy

Bezug
                
Bezug
Ratenzahlung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 So 11.02.2007
Autor: Christian0112

Hey, super!!! vielen Dank!!!!

Bezug
                
Bezug
Ratenzahlung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:33 Mo 12.02.2007
Autor: Christian0112

Wie stelle die Formel denn nochmal nach Z um?

Bezug
                        
Bezug
Ratenzahlung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Mo 12.02.2007
Autor: dhaehn

Hallo,

einfach Z ausklammern - vorher 210000 auf die andere Seite bringen - , und dann durch die entstandene Klammer teilen. Dann steht Z isoliert auf einer Seite.

Gruß
Daniel

Bezug
                                
Bezug
Ratenzahlung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 13.02.2007
Autor: Christian0112

Hallo,

aber dazu muss ich doch die Brüche auf die gleichen Nenner bringen, sonst kann ich die Brüche nicht zusammenfassen!?

Gruß
Christian

Bezug
                                        
Bezug
Ratenzahlung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Mi 14.02.2007
Autor: angela.h.b.


> aber dazu muss ich doch die Brüche auf die gleichen Nenner
> bringen, sonst kann ich die Brüche nicht zusammenfassen!?

Hallo,

wenn es so wäre, wäre es kein Beinbruch, der Hauptnenner läßt sich ja leicht feststellen.

Aber Du brauchst das nicht:

$ [mm] 350.000=210.000+\bruch{Z}{(1+0,065)^{2}}+\bruch{Z}{(1+0,065)^{4}}+\bruch{Z}{(1+0,065)^{6}} [/mm] $

<==>

$ [mm] 350.000=210.000+Z*(\bruch{1}{(1+0,065)^{2}}+\bruch{1}{(1+0,065)^{4}}+\bruch{1}{(1+0,065)^{6}}) [/mm] $

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de