www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Raum H_0^1
Raum H_0^1 < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Raum H_0^1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Mo 04.04.2016
Autor: moerni

Hallo,

Ich habe eine Verständnisfrage. Es geht um den Sobolevraum [mm] H^1 [/mm] bzw. um [mm] H_0^1. [/mm]
Sei [mm] H^1(\Omega) [/mm] der übliche Sobolevraum der [mm] L^2 [/mm] Funktionen mit schwacher Ableitung in [mm] L^2 [/mm] und dem Skalarprodukt [mm] \langle [/mm] f,g [mm] \rangle [/mm] = [mm] \int_{\Omega} \nabla [/mm] f [mm] \cdot \nabla [/mm] g + f [mm] \cdot [/mm] g dx.

[mm] H_0^1 [/mm] = [mm] \{ f \in H^1(\Omega) : \int_{\partial \Omega} f = 0 \} \subset H^1(\Omega), [/mm] dicht

Kann man [mm] H^1(\Omega) [/mm] aufteilen in: [mm] H^1(\Omega) [/mm] = [mm] H_0^1(\Omega) \oplus H_0^1(\Omega)^\perp [/mm] ?

Über jeden Hilfe bin ich sehr dankbar.

LG

        
Bezug
Raum H_0^1: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Mo 04.04.2016
Autor: fred97


> Hallo,
>  
> Ich habe eine Verständnisfrage. Es geht um den Sobolevraum
> [mm]H^1[/mm] bzw. um [mm]H_0^1.[/mm]
>  Sei [mm]H^1(\Omega)[/mm] der übliche Sobolevraum der [mm]L^2[/mm]
> Funktionen mit schwacher Ableitung in [mm]L^2[/mm] und dem
> Skalarprodukt [mm]\langle[/mm] f,g [mm]\rangle[/mm] = [mm]\int_{\Omega} \nabla[/mm] f
> [mm]\cdot \nabla[/mm] g + f [mm]\cdot[/mm] g dx.
>  
> [mm]H_0^1[/mm] = [mm]\{ f \in H^1(\Omega) : \int_{\partial \Omega} f = 0 \} \subset H^1(\Omega),[/mm]
> dicht
>  
> Kann man [mm]H^1(\Omega)[/mm] aufteilen in: [mm]H^1(\Omega)[/mm] =
> [mm]H_0^1(\Omega) \oplus H_0^1(\Omega)^\perp[/mm] ?

Ja, denn [mm] H_0^1(\Omega) [/mm] ist ein abgeschlossener Unterraum des Hilbertraumes  [mm]H^1(\Omega)[/mm].

FRED


>  
> Über jeden Hilfe bin ich sehr dankbar.
>  
> LG


Bezug
                
Bezug
Raum H_0^1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Mo 04.04.2016
Autor: moerni

Hallo FRED,

Erstmal Danke für deine Antwort.

Ok, also [mm] H^1(\Omega) [/mm] kann ich zerteilen in [mm] H^1(\Omega) [/mm] = [mm] H_0^1(\Omega) \oplus H_0^1(\Omega)^\perp. [/mm]

Jetzt betrachte ich die Funktion f(x) = 1. Offensichtlich ist f [mm] \not \in H_0^1(\Omega). [/mm] Dann muss also f [mm] \in H_0^1(\Omega)^\perp [/mm] sein (wegen obiger Zerlegung). Das würde bedeuten, dass für alle v [mm] \in H_0^1(\Omega) [/mm] gilt: [mm] \langle [/mm] v, f [mm] \rangle [/mm] = 0, dh. [mm] \int_\Omega \nabla [/mm] v [mm] \cdot \nabla [/mm] f + v [mm] \cdot [/mm] f dx = 0 ist. Der erste Summand ist tatsächlich null, aber es gilt ja nicht für alle v [mm] \in H_0^1(\Omega), [/mm] dass [mm] \int_\Omega [/mm] v [mm] \cdot [/mm] f dx = [mm] \int_\Omega [/mm] v dx = 0 ist. Wo liegt mein Denkfehler?

Über jede Hilfe bin ich sehr dankbar,
LG

Bezug
                        
Bezug
Raum H_0^1: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mo 04.04.2016
Autor: fred97


> Hallo FRED,
>  
> Erstmal Danke für deine Antwort.
>  
> Ok, also [mm]H^1(\Omega)[/mm] kann ich zerteilen in [mm]H^1(\Omega)[/mm] =
> [mm]H_0^1(\Omega) \oplus H_0^1(\Omega)^\perp.[/mm]
>  
> Jetzt betrachte ich die Funktion f(x) = 1. Offensichtlich
> ist f [mm]\not \in H_0^1(\Omega).[/mm]



>  Dann muss also f [mm]\in H_0^1(\Omega)^\perp[/mm]
> sein (wegen obiger Zerlegung).

Hoppla ! Das stimmt aber nicht !

Machst Du das im [mm] \IR^2 [/mm] auch so ? Dort ist

  [mm] $\IR^2=\{(x,0): x \in \IR\} \oplus \{(0,t): t \in \IR\}$ [/mm]

Nach moerni haben wir die folgenden Implikationen:

  $(1,1) [mm] \notin \{(x,0): x \in \IR\} \Rightarrow [/mm] (1,1) [mm] \in \{(t,0): t \in \IR\} \Rightarrow [/mm] 1=0$.

Puhh !





Die Zerlegung $ [mm] H^1(\Omega) [/mm] $ = $ [mm] H_0^1(\Omega) \oplus H_0^1(\Omega)^\perp [/mm] $ bedeutet:

  zu jedem $f [mm] \in H^1(\Omega)$ [/mm] gibt es eindeutig bestimmte $g [mm] \in H_0^1(\Omega) [/mm] $ und $ h [mm] \in H_0^1(\Omega)^\perp$ [/mm] mit f=g+h.


FRED

> Das würde bedeuten, dass
> für alle v [mm]\in H_0^1(\Omega)[/mm] gilt: [mm]\langle[/mm] v, f [mm]\rangle[/mm] =
> 0, dh. [mm]\int_\Omega \nabla[/mm] v [mm]\cdot \nabla[/mm] f + v [mm]\cdot[/mm] f dx =
> 0 ist. Der erste Summand ist tatsächlich null, aber es
> gilt ja nicht für alle v [mm]\in H_0^1(\Omega),[/mm] dass
> [mm]\int_\Omega[/mm] v [mm]\cdot[/mm] f dx = [mm]\int_\Omega[/mm] v dx = 0 ist. Wo
> liegt mein Denkfehler?
>  
> Über jede Hilfe bin ich sehr dankbar,
>  LG  


Bezug
                                
Bezug
Raum H_0^1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Mo 04.04.2016
Autor: moerni

Aaahh! Tausend Dank, lieber FRED!! Jetzt ists klar :-D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de