www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Rauminhalt eines Vierflachs
Rauminhalt eines Vierflachs < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rauminhalt eines Vierflachs: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:59 So 04.12.2005
Autor: Heidschnucke

Hallo,
wir haben eine Aufgabe bekommen, mit der ich absolut nichts anfangen kann:
Wie groß ist der Rauminhalt des Vierflachs, das die Ebene E = x + 3y + 2z = 6 vom ersten Oktanten abschneidet?
Ich hab keine Ahnung mehr, wie man die Gleichung in eine vektorielle Schreibweise überführen kann oder ist das gar net notwendig?! Ich kapier auch nicht, wo die Ebene wie abgeschnitten wird und was das mit dem 1. Oktanten zu tun hat... Ich weiß nur, dass alle Punkte, deren 3 Koordinaten positive Werte haben, im 1. Oktanten liegen.
Vielen Dank für eure Hilfe!!
Heidschnucke

        
Bezug
Rauminhalt eines Vierflachs: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 So 04.12.2005
Autor: Zwerglein

Hi, Heidschnucke,

>  Wie groß ist der Rauminhalt des Vierflachs, das die Ebene
> E = x + 3y + 2z = 6 vom ersten Oktanten abschneidet?
>  Ich hab keine Ahnung mehr, wie man die Gleichung in eine
> vektorielle Schreibweise überführen kann oder ist das gar
> net notwendig?!

Stimmt: Ist gar nicht notwendig!
(Aber: Wenn Du's trotzdem wissen möchtest, stell's bitte als eigene Frage in einem neuen Strang!)

Du brauchst erst mal die Eckpunkte des Vierflachs.
Der eine davon ist natürlich der Ursprung O(0/0/0)
Die andern drei sind die Schnittpunkte Deiner Ebene mit den Koordinatenachsen, also die Achsenabschnittspunkte.
Diese kannst Du mit Hilfe der Achsenabschnittsform der Ebene ermitteln, oder - wenn Du die nicht mehr kennst - indem Du entsprechende Koordinaten =0 setzt.
Z.B. haben ja alle Punkte auf der x-Achse die Form (a/ 0 / 0), d.h. y- und z- Koordinaten sind =0.
Daher setzt Du y=z=0 in die Ebenengleichung und kriegst:
x +3*0 + 2*0 = 6; also: x=6  und damit: A(6 / 0 / 0)
Analog die beiden anderen:
B(0 / 2 / 0)  und C(0 / 0 / 3)

Dein Vierflach hat im Ursprung nur rechte Winkel (mach' mal 'ne Skizze!).
Daher kannst Du's mit den Formeln der Mittelstufe berechnen:

V = [mm] \bruch{1}{3}*Grundfläche*Höhe [/mm]

Als Grundfläche nimmst Du das Dreieck OAB (nicht ABC! Das macht's viel zu schwierig!), als Höhe die Strecke [mm] \overline{OC}. [/mm]

(Zur Kontrolle: V = 6)

mfG!
Zwerglein

  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de