www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - Re(z) & Im(z) und Betrag
Re(z) & Im(z) und Betrag < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Re(z) & Im(z) und Betrag: Im Zweifel
Status: (Frage) beantwortet Status 
Datum: 22:22 Mi 23.11.2011
Autor: Zelda

Aufgabe
Bestimmen Sie Real- und Imaginärteil und Betrag der folgenden kom-
plexen Zahlen z:


[mm]z:=[/mm] [mm]i^{n}[/mm], [mm]n \in \IN 0[/mm]



Die Potenzen von i bilden eine zyklische Gruppe.
Die Gleichung lautet ja: [mm]z:= 0+1i^{n}[/mm]

Meine Überlegung ist, dass der Re(z)=0 ist und Im(z)= 1 oder -1 ist. Mit
[mm] k\in\IN \Rightarrow i^{4k}=1 \backslash i^{4k+1}=i\backslash i^{4k+2}=-1\backslash i^{4k+3}=-i[/mm]

Kann ich jetzt einfach schreiben Im(z)=1, wenn
[mm]i^{n} = i^{4k} oder i^{4k+1} [/mm]und analog für Im(z)= -1???


Re(z)= 0 gilt immer.

Und was ist mit dem Betrag? Ich muss die Aufgabe morgen abgeben und freue mich über jeden Beitrag.
Danke


        
Bezug
Re(z) & Im(z) und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mi 23.11.2011
Autor: donquijote


> Bestimmen Sie Real- und Imaginärteil und Betrag der
> folgenden kom-
>  plexen Zahlen z:
>  
>
> [mm]z:=[/mm] [mm]i^{n}[/mm], [mm]n \in \IN 0[/mm]
>  
> Die Potenzen von i bilden eine zyklische Gruppe.

richtig erkannt

>  Die Gleichung lautet ja: [mm]z:= 0+1i^{n}[/mm]
>  
> Meine Überlegung ist, dass der Re(z)=0 ist und Im(z)= 1
> oder -1 ist. Mit
> [mm]k\in\IN \Rightarrow i^{4k}=1 i^{4k+1}=ii^{4k+2}=-1i^{4k+3}=-i[/mm]

Da steht ja schon alles, nur ist nicht immer der Realteil 0 und der Imaginärteil [mm] \pm [/mm] 1

>  
> Kann ich jetzt einfach schreiben Im(z)=1, wenn
> [mm]i^{n} = i^{4k} oder i^{4k+1} [/mm]und analog für Im(z)=
> -1???
>  
>
> Re(z)= 0 gilt immer.

Nein. Rechne [mm] i^n [/mm] für n=1,2,3,4 aus und schreib dir den Real- und Imaginärteil hin. Dann müsste eigentlich klar werden, welche Werte für Real- und Imaginärteil auftreten können.

>  
> Und was ist mit dem Betrag? Ich muss die Aufgabe morgen
> abgeben und freue mich über jeden Beitrag.

Der Betrag sollte kein Problem sein, wenn du weißt, welche Werte [mm] i^n [/mm] annehmen kann.

>  Danke
>  


Bezug
                
Bezug
Re(z) & Im(z) und Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Mi 23.11.2011
Autor: Zelda

Yihaa! Oh man... danke. Es ist im grunde mal wieder ganz einfach und jetzt in meinem kopf angekommen. Danke und schönen Abend, äh Nacht!


Bezug
                
Bezug
Re(z) & Im(z) und Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Mi 23.11.2011
Autor: Zelda


Also ist im Fall von n=2 der Re(z)= -1 und der Im(z)= 0?
Und nur im Fall das ein i oder -i rauskommt ist der Re(z)=0?

Ich hake...


Bezug
                        
Bezug
Re(z) & Im(z) und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mi 23.11.2011
Autor: donquijote


>
> Also ist im Fall von n=2 der Re(z)= -1 und der Im(z)= 0?

stimmt

>  Und nur im Fall das ein i oder -i rauskommt ist der
> Re(z)=0?

stimmt auch.
Es gibt abhängig von n 4 Möglichkeiten. Entweder ist Re(z)=0 und [mm] Im(z)=\pm [/mm] 1 oder umgekehrt.

>  
> Ich hake...
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de