www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Realteil und Imaginärteil
Realteil und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Realteil und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Mi 18.01.2012
Autor: zoj

Aufgabe
Habe hier einen komplexen Ausdruck: [mm] c_{k} [/mm] = [mm] \frac{sinh(\pi)}{\pi(1-ik)} [/mm] mit k [mm] \in \IZ [/mm] und i [mm] \in \IC. [/mm]

Ich will [mm] a_{k} [/mm] = 2 Realteil( [mm] c_{k} [/mm] ) und [mm] b_{k} [/mm] = 2 Imaginärteil( [mm] c_{k} [/mm] ) bestimmen.


Laut Musterlösung kommt für
[mm] a_{k} [/mm] = 2 Realteil( [mm] c_{k} [/mm] )  = 2 [mm] \frac{sinh(\pi)}{\pi(1+k^{2})} [/mm]
raus und für
[mm] b_{k} [/mm] = 2 Imaginärteil( [mm] c_{k} [/mm] ) = -2 [mm] \frac{sinh(\pi)}{\pi(1+k^{2})} [/mm]

Frage ist, wie hat man es gemacht?
Eigentlich ist doch der ganze Ausdruck [mm] \frac{sinh(\pi)}{\pi(1-ik)} [/mm] eine komplexe Zahl oder?

        
Bezug
Realteil und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mi 18.01.2012
Autor: MathePower

Hallo zoj,


> Habe hier einen komplexen Ausdruck: [mm]c_{k}[/mm] =
> [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] mit k [mm]\in \IZ[/mm] und i [mm]\in \IC.[/mm]
>  
> Ich will [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] ) und [mm]b_{k}[/mm] = 2
> Imaginärteil( [mm]c_{k}[/mm] ) bestimmen.
>  
> Laut Musterlösung kommt für
> [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] )  = 2
> [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
>  raus und für
> [mm]b_{k}[/mm] = 2 Imaginärteil( [mm]c_{k}[/mm] ) = -2
> [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
>
> Frage ist, wie hat man es gemacht?
> Eigentlich ist doch der ganze Ausdruck
> [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] eine komplexe Zahl oder?


Die Musterlösung kann nur zustandekommen,
wenn "i" selbst als komplexe Zahl gesehen wird.


Gruss
MathePower

Bezug
                
Bezug
Realteil und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Mi 18.01.2012
Autor: zoj


> Hallo zoj,
>  
>
> > Habe hier einen komplexen Ausdruck: [mm]c_{k}[/mm] =
> > [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] mit k [mm]\in \IZ[/mm] und i [mm]\in \IC.[/mm]
>  
> >  

> > Ich will [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] ) und [mm]b_{k}[/mm] = 2
> > Imaginärteil( [mm]c_{k}[/mm] ) bestimmen.
>  >  
> > Laut Musterlösung kommt für
> > [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] )  = 2
> > [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
>  >  raus und für
> > [mm]b_{k}[/mm] = 2 Imaginärteil( [mm]c_{k}[/mm] ) = -2
> > [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
> >
> > Frage ist, wie hat man es gemacht?
> > Eigentlich ist doch der ganze Ausdruck
> > [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] eine komplexe Zahl oder?
>
>
> Die Musterlösung kann nur zustandekommen,
>  wenn "i" selbst als komplexe Zahl gesehen wird.
>  
>
> Gruss
>  MathePower

Tut mir leid, aber ich verstehe das nicht.
Bis jetzt war es ja so, dass man Realteil und Imaginärteil aufgeteilt hat.
Aber in diesen Fall geht es schlecht.


Bezug
                        
Bezug
Realteil und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Mi 18.01.2012
Autor: MathePower

Hallo  zoj,

> > Hallo zoj,
>  >  
> >
> > > Habe hier einen komplexen Ausdruck: [mm]c_{k}[/mm] =
> > > [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] mit k [mm]\in \IZ[/mm] und i [mm]\in \IC.[/mm]
>  
> >  

> > >  

> > > Ich will [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] ) und [mm]b_{k}[/mm] = 2
> > > Imaginärteil( [mm]c_{k}[/mm] ) bestimmen.
>  >  >  
> > > Laut Musterlösung kommt für
> > > [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] )  = 2
> > > [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
>  >  >  raus und für
> > > [mm]b_{k}[/mm] = 2 Imaginärteil( [mm]c_{k}[/mm] ) = -2
> > > [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
> > >
> > > Frage ist, wie hat man es gemacht?
> > > Eigentlich ist doch der ganze Ausdruck
> > > [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] eine komplexe Zahl oder?
> >
> >
> > Die Musterlösung kann nur zustandekommen,
>  >  wenn "i" selbst als komplexe Zahl gesehen wird.
>  >  
> >
> > Gruss
>  >  MathePower
>
> Tut mir leid, aber ich verstehe das nicht.
> Bis jetzt war es ja so, dass man Realteil und Imaginärteil
> aufgeteilt hat.


Nun, "i" ist  nicht als "i" in a+i*b zu sehen,
sondern "i" ist selbst als komplexe Zahl zu sehen.

Z.B. i=u+j*v  mit j die imaginäre Einheit.


>  Aber in diesen Fall geht es schlecht.

>


Gruss
MathePower  

Bezug
                                
Bezug
Realteil und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:54 Do 19.01.2012
Autor: Fulla

Hallo MathePower,

ich verstehe deinen Ansatz auch nicht so ganz... Wenn man i als komplexe Zahl $u+jv$ auffasst, müssen doch u und v im Real- bzw. Imaginärteil vorkommen. Aber in der Musterlösung von zoj kann ich da nix rauslesen...

Schlüssiger wäre da für mich, wenn i die imaginäre Einheit ist. Die Musterlösung stimmt dann zwar auch nicht, aber wenn man beim Imaginärteil das "-" durch "k" ersetzt passt es.


Lieben Gruß,
Fulla


Bezug
        
Bezug
Realteil und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 18.01.2012
Autor: Fulla

Hallo zoj,

> Habe hier einen komplexen Ausdruck: [mm]c_{k}[/mm] =
> [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] mit k [mm]\in \IZ[/mm] und i [mm]\in \IC.[/mm]
>  
> Ich will [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] ) und [mm]b_{k}[/mm] = 2
> Imaginärteil( [mm]c_{k}[/mm] ) bestimmen.
>  
> Laut Musterlösung kommt für
> [mm]a_{k}[/mm] = 2 Realteil( [mm]c_{k}[/mm] )  = 2
> [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
>  raus und für
> [mm]b_{k}[/mm] = 2 Imaginärteil( [mm]c_{k}[/mm] ) = -2
> [mm]\frac{sinh(\pi)}{\pi(1+k^{2})}[/mm]
>
> Frage ist, wie hat man es gemacht?
> Eigentlich ist doch der ganze Ausdruck
> [mm]\frac{sinh(\pi)}{\pi(1-ik)}[/mm] eine komplexe Zahl oder?

Ja, das ist eine komplexe Zahl und das "komplexe" steckt im Nenner, denn [mm]\sinh(\pi)[/mm] ist eine reelle Zahl.
Die Frage ist, ob "[mm]i\in\mathbb C[/mm]" bedeutet "[mm]i[/mm] ist (irgendeine) komplexe Zahl" oder vielleicht "[mm]i[/mm] ist die imaginäre Einheit, d.h. [mm]i:=\sqrt{-1}[/mm]". Was weißt du denn noch über dieses [mm]i[/mm]? Ich gehe mal von [mm] $i=\sqrt{-1}$ [/mm] aus...

Um das ganze auf die Form [mm]a+i*b[/mm] zu bringen, musst du den Bruch mit [mm]1+ik[/mm] erweitern.
Allerdings stimmt dann der Imaginärteil nicht mit der Musterlösung überein... Falls du alles richtig abgetippt hast, ist da irgendwo der Wurm drin...


Lieben Gruß,
Fulla


Bezug
        
Bezug
Realteil und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Do 19.01.2012
Autor: zoj

OK, habe den Fehler gefunden.

In der Angabe ist i keine komplexe Zahl, sondern komplexe Einheit.

Was man machen musste war den Bruch mit den komplex-konjugierten Nenner malzunehmen.
Dann kann man den Bruch in Imaginär und Real-teil auflösen.

Bezug
                
Bezug
Realteil und Imaginärteil: Erweitern heißt das Wort!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Do 19.01.2012
Autor: Marcel

Hallo,

> OK, habe den Fehler gefunden.
>  
> In der Angabe ist i keine komplexe Zahl, sondern komplexe
> Einheit.
>  
> Was man machen musste war den Bruch mit den
> komplex-konjugierten Nenner malzunehmen.

sicherlich nicht. Du meinst "erweitern". Nichts anderes hatte Fulla Dir vorgeschlagen. (Beachte: Wenn Du einen Bruch [mm] $a/b\,$ [/mm] mal zwei nimmst, verdoppelst Du ihn zu [mm] $2a/b\,$ [/mm] und veränderst ihn damit - wenn Du ihn mit [mm] $2\,$ [/mm] erweiterst, so rechnest Du [mm] $(a/b)*(2/2)=(2a)/(2b)\,,$ [/mm] veränderst den Bruch damit nicht!)

> Dann kann man den Bruch in Imaginär und Real-teil
> auflösen.

Besser: Man kann in der Form dann den Real- und Imaginarteil ablesen.

Ist nicht böse gemeint - aber gerade oben dieses "den Bruch mit einer Zahl malnehmen" für "den Bruch mit einer Zahl zu erweitern" wird so häufig verwendet, und sorgt immer und immer wieder für Verwirrung.

Ich wäre froh, man würde das auch mal etwa bei meinem Gehalt machen: Leider wird dieses in einer Bruchdarstellung nicht mit einer Zahl ($> [mm] 1\,$) [/mm] malgenommen, sondern man erweitert diesen Bruch immer nur :-(

;-)

Gruß,
Marcel

Bezug
                        
Bezug
Realteil und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Do 19.01.2012
Autor: zoj

Ok, danke für den Hinweis!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de