www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Rechengesetze bei Lognormvert.
Rechengesetze bei Lognormvert. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechengesetze bei Lognormvert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Sa 11.03.2006
Autor: illuminatif

Ich brauche für die Optionsbewertung einer Option auf zwei Basisobjekte F und G einen Ausschnitt aus der bivariaten Lognormalverteilung, für den gilt:
G < 100-F.
Meine Idee ging in die Richtung, dass ich aus G und (100-F) eine Cross-Rate  [mm] \bruch{G}{(100-F)} [/mm] bilde. Meine Frage ist nun, ob diese Cross-Rate auch lognormalverteilt ist?
Ich weiß aus der Bewertung einer Exchange-Option, dass die Cross-Rate  [mm] \bruch{G}{F} [/mm] die Lognormalverteilungsprämisse erfüllt. Allerdings kenne ich mich mit den Rechenregeln der Lognormalverteilung nicht aus, weshalb ich auch um Literaturhinweise dazu dankbar bin.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank,
Martin


        
Bezug
Rechengesetze bei Lognormvert.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Sa 11.03.2006
Autor: felixf

Sali!

> Ich brauche für die Optionsbewertung einer Option auf zwei
> Basisobjekte F und G einen Ausschnitt aus der bivariaten
> Lognormalverteilung, für den gilt:
>  G < 100-F.
> Meine Idee ging in die Richtung, dass ich aus G und (100-F)
> eine Cross-Rate  [mm]\bruch{G}{(100-F)}[/mm] bilde. Meine Frage ist
> nun, ob diese Cross-Rate auch lognormalverteilt ist?

Im allgemeinen nein (siehe unten).

>  Ich weiß aus der Bewertung einer Exchange-Option, dass die
> Cross-Rate  [mm]\bruch{G}{F}[/mm] die Lognormalverteilungsprämisse
> erfüllt.

Du meinst, dass [mm] $\frac{G}{F}$ [/mm] wieder lognormal verteilt ist? Dazu musst du aber voraussetzen, dass $G$ und $F$ stochastisch unabhaengig sind (andernfalls ist es mehr oder weniger Zufall, wenn das wieder lognormalverteilt ist).

> Allerdings kenne ich mich mit den Rechenregeln der
> Lognormalverteilung nicht aus, weshalb ich auch um
> Literaturhinweise dazu dankbar bin.

Nun, du musst folgendes wissen: $X$ ist genau dann Lognormalverteilt, wenn [mm] $\log [/mm] X$ Normalverteilt ist. Und dann musst du die Rechenregeln fuer eine Normalverteilung kennen: Sind $X$ und $Y$ normalverteilt, so ist auch [mm] $\lambda [/mm] X + [mm] \mu$ [/mm] fuer [mm] $\lambda, \mu \in \IR$, $\lambda \neq [/mm] 0$ normalverteilt, und sind $X$ und $Y$ zusaetzlich unabhaengig, so ist auch $X + Y$ normalverteilt.

Daraus folgt: Sind $X$ und $Y$ lognormalverteilt, so ist auch [mm] $\lambda X^\mu$ [/mm] normalverteilt mit [mm] $\lambda [/mm] > 0$ und [mm] $\mu \neq [/mm] 0$. Sind $X$ und $Y$ unabhaengig, so ist $X Y$ lognormalverteilt.

Dies folgt ganz einfach aus den Rechenregeln des Logarithmus und den Rechenregeln fuer die Normalverteilung: [mm] $\log (\lambda X^\mu) [/mm] = [mm] \log \lambda [/mm] + [mm] \mu \log [/mm] X$, und [mm] $\log [/mm] (X Y) = [mm] \log [/mm] X + [mm] \log [/mm] Y$.

Was ganz wichtig ist: Ist $X$ lognormalverteilt, so ist $X + [mm] \mu$ [/mm] im allgemeinen nicht lognormalverteilt, es sei denn [mm] $\mu [/mm] = 0$. Das siehst du sofort, wenn du dir die Dichte von $X + [mm] \mu$ [/mm] anschaust: Bei einer lognormalverteilten ZV ist die Dichte immer erst ab dem Nullpunkt [mm] $\neq [/mm] 0$ (und zwar genau ab dort).

Aus diesem Grund wuerde es mich sehr wundern, wenn [mm] $\frac{F}{100 - G}$ [/mm] wieder lognormalverteilt waere (wobei das in Spezialfaellen natuerlich vorkommen kann): Denn [mm] $\log \frac{F}{100 - G} [/mm] = [mm] \log [/mm] F - [mm] \log(100 [/mm] - G)$, und [mm] $\log(100 [/mm] - G)$ ist nicht Lognormalverteilt.

HTH & LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de