www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Rechenoperationen mit Matrizen
Rechenoperationen mit Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenoperationen mit Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 So 15.01.2006
Autor: Jackson

Hallo,
irgendwie ist es für mich wohl noch zu früh für Mathe, aber vielleicht kann mir jemand helfen.
Ich weiß, dass normalerweise die Matrizenmultiplikation nicht kommutativ ist, aber gibt es dabei eine Außnahme wenn ich eine symmetrische nxn-Matrix mit einer nxn-Matrix multipliziere, die nur aus Einsen besteht? Gibt es vielleicht bei symmetrischen Matrizen andere Regeln? Denn irgendwie komme ich nicht anders auf die Lösung!
Vielen Dank!

        
Bezug
Rechenoperationen mit Matrizen: nicht kommutativ
Status: (Antwort) fertig Status 
Datum: 11:25 So 15.01.2006
Autor: mathmetzsch

Hallo,

die Matrizenmultiplikation ist nicht kommutativ. Du kannst es gerne mal ausprobieren. Es wird i.A. nicht stimmen. Aber:

Bei (n,n)-Matrizen ist die Multiplikation assoziativ und es gilt das Distributivgesetz.

Wenn du damit die Einheitsmatrix meinst, mit der kannst du natürlich machen, was du willst. Man könnte sie hier als neutrales Element e bezeichnen. Es ist von daher egal, ob du e von rechts und links multiplizierst.

Viele Grüße
Daniel

Bezug
                
Bezug
Rechenoperationen mit Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:26 So 15.01.2006
Autor: Jackson

Hi, danke erstmal für die Hilfe.
Ich meine aber nicht die Einheitsmatrix, dann wäre mir die Sache klar, ich meine eine (nxn)-Matrix, die nur +1 Einträge an jeder Stelle hat!
Also:  [mm] \pmat{ 1 & 1&... \\ 1&1 & ...\\...&...&... } [/mm]

Bezug
                        
Bezug
Rechenoperationen mit Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 So 15.01.2006
Autor: taura

Hallo Jackson!

Leider sind die nicht kommutativ, Gegenbeispiel:

[mm] $\pmat{1 & 1 \\ 1 & 1}*\pmat{a & b \\ b & c}=\pmat{a+b & b+c \\ a+b & b+c}$ [/mm]

[mm] $\pmat{a & b \\ b & c}*\pmat{1 & 1 \\ 1 & 1}=\pmat{a+b & a+b \\ b+c & b+c}$ [/mm]

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de