www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Rechenregel falsch verstanden?
Rechenregel falsch verstanden? < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregel falsch verstanden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Sa 05.11.2005
Autor: Mathestarter

So ich habe folgenden Bruch:

[mm] x^{3} \* y^{2} \* [/mm] z  - x  [mm] \* y^{2} \* z^{3} [/mm]
       [mm] x^{2} \* y^{3} \* [/mm] z  - x  [mm] \* y^{3} \* z^{2} [/mm]

so nun meine rechnung :
=  x * [mm] y^{-1} [/mm] -  [mm] y^{-1} [/mm] * z
= x - z

Nun ist meine rechnung wohl falsch zumindest wurd mir das gesagt nun weis ich aber nich wieso und wie man es richtig löst,daher wäre ich über eine korrekte lösung dankbar.

gruss

        
Bezug
Rechenregel falsch verstanden?: Aufgabe unklar
Status: (Antwort) fertig Status 
Datum: 10:50 Sa 05.11.2005
Autor: Loddar

Guten Morgen Mathestarter!


Wie lautet denn Deine Aufgabe bzw. Dein zu vereinfachender Term?

So?   [mm]x^3*y^2*\bruch{z - x}{x^2*y^3 - x*y^3* z^2}* y^2 * z^3[/mm]


Bitte benutze doch unseren Formeleditor, dann ist das gleich viel schöner und eindeutig.


[mm]x^3*y^2*\bruch{z - x}{x^2*y^3 - x*y^3* z^2}* y^2 * z^3[/mm]

[mm]= \ \bruch{x^3*y^2*(z-x)* y^2 * z^3}{x*y^3*\left(1 - z^2\right)} [/mm]

[mm]= \ \bruch{x^2*1*(z-x)* y*z^3}{1 - z^2} [/mm]

[mm]= \ \bruch{x^2*y*z^3*(z-x)}{1 - z^2} [/mm]



Gruß
Loddar


Bezug
                
Bezug
Rechenregel falsch verstanden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Sa 05.11.2005
Autor: Mathestarter

Denn habe ich genutzt nur habe ich das nicht mit dem Bruchstrich hinbekommen :(

du müßt dir denn bruchstrich durchgängig vorstellen,also alles was nun in der mitte schwebt muss nach oben und das Minuszeichen trennt die jeweils 3 faktoren voneinander,jeweils ober und unterhalb des bruchstrichs
und ein z unten fehlt noch .... naja ich versuchs nochmal.



\ [mm] \bruch{ x^{3} * y^{2} * z - x * y^{2} * z^{3}}{ x^{2} * y^{3} * z - x * y^{3} * z^{2}} [/mm]

hoffe das klappt nun :(

Bezug
                        
Bezug
Rechenregel falsch verstanden?: Ausklammern
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 05.11.2005
Autor: Loddar

Hallo Mathestarter!


Aaah, da sieht die Sache gleich ganz anders aus ;-) ...


$... \ = \ x * [mm] y^{-1} [/mm] -  [mm] y^{-1} [/mm] * z $


Bis hierhin hast Du fast richtig gerechnet. Allerdings gehöärt da ein [mm] $\red{+}$ [/mm] dazwischen:

$... \ = \ x * [mm] y^{-1} [/mm] \ [mm] \red{+} [/mm] \  [mm] y^{-1} [/mm] * z $


Und nun lässt Du einfach so das [mm] $y^{-1}$ [/mm] verschwinden [notok] !


Hier klammen wir dann aus:

$... \ = \ [mm] y^{-1} [/mm] * (x+z) \ = \ [mm] \bruch{1}{y^1} [/mm] * (x+z) \ = \ [mm] \bruch{x+z}{y}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Rechenregel falsch verstanden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 05.11.2005
Autor: Mathestarter

So erstmal besten dank an dich Loddar,habe den Lösungsweg verstanden.

okay nun noch 2 kurze fragen dazu.

1. du sagst da muss ein "+" hin statt dem "-",liegt das daran das man oben und unten ein "-" hat und minus minus= plus gibt?

2.du sagtest ich habe einfach das [mm] x^{-1} [/mm] wegfallen lassen,das habe  ich wohl vorschnell gemacht weil es so schön "optisch passte"hatte ja ein minus da stehen*g* habe da wohl punkt vor strich einfach mal vergessen ;)


gruss

Bezug
                                        
Bezug
Rechenregel falsch verstanden?: 3. binomische Formel
Status: (Antwort) fertig Status 
Datum: 13:08 Sa 05.11.2005
Autor: Loddar

Hallo Mathestarter!


> 1. du sagst da muss ein "+" hin statt dem "-",liegt das
> daran das man oben und unten ein "-" hat und minus minus=
> plus gibt?

[notok] [notok]   Das Plus-Zeichen entstand durch eine 3. binomische Formel im Zähler:

[mm] $x^2-z^2 [/mm] \ = \ (x+z)*(x-z)$


Und nach dem Kürzen durch $(x-z)_$ verbleibt halt der Term [mm] $x\red{+}z$ [/mm] .



> 2.du sagtest ich habe einfach das [mm]x^{-1}[/mm] wegfallen
> lassen,das habe  ich wohl vorschnell gemacht weil es so
> schön "optisch passte"hatte ja ein minus da stehen*g* habe
> da wohl punkt vor strich einfach mal vergessen ;)

Na, wenigstens nun selber erkannt ;-) ...


Gruß
Loddar


Bezug
                                                
Bezug
Rechenregel falsch verstanden?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Sa 05.11.2005
Autor: Mathestarter

okay ich habe grad gemrkt das ich die erste teillösung anfangs komplett falsch gerechnet habe denn ich habe :

[mm] \bruch{a^{n}}{a^{m}} [/mm] = [mm] a^{n - m} [/mm]   gerechnet

das geht aber wohl nicht weil man das wohl nur anwenden darf wenn keine addi oder subtraktion im bruch vorliegt?

daher wäre es nett wenn du mir das ausklammern bei dieser aufgabe explizit erklären könntest bzw wie du die 3 binomische formel hier herleitest...

ich glaub mathe wird nie mein lieblingsgebiet werden*smile*

Bezug
                                                        
Bezug
Rechenregel falsch verstanden?: Zwischenschritte
Status: (Antwort) fertig Status 
Datum: 13:57 Sa 05.11.2005
Autor: Loddar

Hallo!


> okay ich habe grad gemrkt das ich die erste teillösung
> anfangs komplett falsch gerechnet habe denn ich habe :
>  
> [mm]\bruch{a^{n}}{a^{m}}[/mm] = [mm]a^{n - m}[/mm]   gerechnet
>  
> das geht aber wohl nicht weil man das wohl nur anwenden
> darf wenn keine addi oder subtraktion im bruch vorliegt?

[daumenhoch] Ganz genau!


  

> daher wäre es nett wenn du mir das ausklammern bei dieser
> aufgabe explizit erklären könntest bzw wie du die 3
> binomische formel hier herleitest...

[mm] $\bruch{x^3*y^2*z- x*y^2*z^3}{x^2*y^3*z-x*y^3*z^2}$ [/mm]

$= \ [mm] \bruch{x*y^2*z*\left(x^2*1*1- 1*1*z^2\right)}{x*y^3*z*\left(x^1*1*1-1*1*z^1\right)}$ [/mm]

$= \ [mm] \bruch{\red{x}*\blue{y^2}*\green{z}*\left(x^2-z^2\right)}{\red{x}*\blue{y^3}*\green{z}*\left(x-z\right)}$ [/mm]

$= \ [mm] \bruch{\red{1}*\blue{1}*\green{1}*\left(x^2-z^2\right)}{\red{1}*\blue{y^1}*\green{1}*\left(x-z\right)}$ [/mm]

$= \ [mm] \bruch{\red{(x-z)}*(x+z)}{y*\red{(x-z)}}$ [/mm]

$= \ [mm] \bruch{\red{1}*(x+z)}{y*\red{1}}$ [/mm]

$= \ [mm] \bruch{x+z}{y}$ [/mm]


Nun klar(er) und [lichtaufgegangen] ??


Gruß
Loddar


Bezug
                                                                
Bezug
Rechenregel falsch verstanden?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Sa 05.11.2005
Autor: Mathestarter

ja herzlichen Dank Loddar mir ist ein Licht [lichtaufgegangen] *g*

allerdings nachdem ich so ziemlich alles falsch gemacht habe habe ich glaube ich einen winzigen fehler bei deiner Darstellung gefunden*g*

Nach dem 3ten "=" Zeichen das "x" unter dem Bruch müßte doch eine 1 sein oder?

also vielen Dank deine explizite ausführung hat mir echt sehr geholfen :)

gruss

Bezug
                                                                        
Bezug
Rechenregel falsch verstanden?: Stimmt ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Sa 05.11.2005
Autor: Loddar

Hallo Mathestarter!


> Nach dem 3ten "=" Zeichen das "x" unter dem Bruch müßte
> doch eine 1 sein oder?

[ok] Sehr gut! Ich habe es bereits korrigiert, danke!

(Ich wollte ja nur sehen, ob Du aufpasst [grins] ...)


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de