www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Rechnen mit Logarithmen
Rechnen mit Logarithmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mo 05.06.2006
Autor: zaft

Aufgabe 1
Geben sie alle Lösungen der folgenden Gleichungen an:
a) lg [mm] (x^{2}) [/mm] = 1
[mm] b)81^{x+2/x+12} [/mm] = 1/3
[mm] c)x^{lgx} [/mm] = 10

Aufgabe 2
Spalten sie so weit wie möglich auf:
lg [mm] (0,1107*\wurzel[3]{23,4} [/mm] / [mm] (\wurzel{0,85})^{3} [/mm] * [mm] 0,019^{2}) [/mm]
(Die Berechnung der Endergebnisse ist nicht erforderlich.)

Hallo Leute,

bin ganz neu in dem Forum. Möchte mich kurz vorstellen, heiße zaft, bin 29 Jahre alt und bin gerade in Elternzeit. Habe mir nun vorgenommen bei ILS das Abitur nachzuholen. So, nun sitze ich da und habe schon meine ersten Schwierigkeiten. Das Thema ist Logarithmus. Irgendwie habe ich da meine Probleme. Vielleicht könnt ihr mir bei den oben aufgeführten Aufgaben helfen und wenn es geht es mir erklären, so dass ich dies nun endlich auch verstehe. Das wäre echt lieb. Badanke mich im Voraus für Eure Hilfe.

Lieben Gruss an alle
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rechnen mit Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mo 05.06.2006
Autor: Seppel

Hallo zaft!

Dann will ich mal versuchen, dir zu helfen. :-)

Zu Aufgabe 1):

a) [mm] $\lg(x^2)=1$ [/mm]

[mm] \lg [/mm] ist ja der dekadische Logarithmus, also der Logarithmus zur Basis 10. Es gilt, dass [mm] $\lg(10)=1$. [/mm] Somit können wir obige Gleichung umformen:

[mm] $\lg(x^2)=\lg(10)$ [/mm]

Das ist äquivalent zu:

[mm] $x^2=10$ [/mm]

So eine Gleichung ist dir sicher noch von früher bekannt. Wir ziehen die Wurzel und erhalten als Lösungen:

[mm] $x=-\wurzel(10)\vee x=\wurzel(10)$ [/mm]

b) [mm] $81^{x+2/x+12}=\frac{1}{3}$ [/mm]

Nun, um das zu lösen, wenden wir auf beiden Seiten den dekadischen Logarithmus an. Also:

[mm] $\left(\frac{x+2}{x+12}\right)*\lg(81)=\log\left(\frac{1}{3}\right)$ [/mm]

Nach einem der Logarithmusgesetze gilt: [mm] $\lg\left(\frac{a}{b}\right)=\lg(a)-\lg(b)$. [/mm]

Somit erhalten wir

[mm] $\left(\frac{x+2}{x+12}\right)*\lg(81)=\log(1)-\log(3)$ [/mm]

Es [mm] ist$\log(1)=0$, [/mm] somit folgt:

[mm] $\left(\frac{x+2}{x+12}\right)*\lg(81)=-\log(3)$ [/mm]

Das dividieren wir durch [mm] $\lg(81)$ [/mm] - dann musst du den Rest nach x auflösen. Ich denke, das kriegst du hin, bei Fragen kannst du dich ruhig melden.

c) [mm] $x^{\lg(x)}=10$ [/mm]

Nach anwenden der Logarithmusgesetze gilt [mm] $x^{\lg(x)}=((10)^{\lg(x)})^{lg(x)}=10^{(\lg(x))^2}$. [/mm]

Somit können wir die Ausgangsgleichung so schreiben:

[mm] $10^{(\lg(x))^2}=10$ [/mm]

Jetzt wendest du auf beiden Seiten wieder den dekadischen Logarithmus an und erhälst:

[mm] $(\lg(x))^2*\lg(10)=\lg(10)$ [/mm]

Jetzt ziehst du die Wurzel und erhälst:

[mm] $\lg(x)=-1\vee \lg(x)=1$ [/mm]

Bekommst du die Lösungen für x alleine raus?

Zu Aufgabe 2):

Hier musst du einfach mit den Logarithmusgesetzen arbeiten.

Es gilt [mm] $\lg(a*b)=\lg(a)+\lg(b)$ [/mm] und [mm] $\lg\left(\frac{a}{b}\right)=\lg(a)-\lg(b)$. [/mm]

Versuche mal Aufgabe 2) mithilfe dieser Gesetze zu bearbeiten.

Ich hoffe, dir hilft das weiter - auf jeden Fall viel Erfolg beim Nachholen des Abiturs! :-)

Liebe Grüße
Seppel

Bezug
                
Bezug
Rechnen mit Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Mo 05.06.2006
Autor: zaft

Danke für deine Hilfe.

Zu 2:
Meinst du
X= -1/lg bzw. X= 1/lg  ? Ist das das Endergebnis?

Zu 3:
lg0,1107 + [mm] lg\wurzel[3]{23,4} [/mm] / lg [mm] \wurzel{0,85}^{3} [/mm] + [mm] lg0,019^{2} [/mm] =

lg [mm] \wurzel{0,85} [/mm] ^{3} + [mm] lg0,019^{2} [/mm] usw.

Ist das der richtige Weg?


Bezug
                        
Bezug
Rechnen mit Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mo 05.06.2006
Autor: Seppel

Hallo zaft!

Bei 1c) sind die Ergebnisse [mm] $x=\frac{1}{10}\vee [/mm] x=10$. Das kannst du durch einsetzen der x-Werte nachprüfen.

Bei Aufgabe 2) meinte ich das so:

[mm] $\lg\left(\frac{0,1107*\wurzel[3]{23,4}}{\wurzel(0,85^3)*0,019^2}\right)$ [/mm]
[mm] $=\lg(0,1107*\wurzel[3]{23,4})-\lg(\wurzel(0,85^3)*0,019^2)$ [/mm]

So und und nun mit dem Logarithmusgesetz [mm] $\lg(a*b)=\lg(a)+\lg(b)$ [/mm] weiterarbeiten.

Liebe Grüße
Seppel

P.S.: Wenn du beim nächsten mal noch eine Frage hast, bitte wieder eine Frage anhängen und diese nicht als Mitteilung schreiben - sonst denkt man, es wäre keine Frage.

Bezug
                                
Bezug
Rechnen mit Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mo 05.06.2006
Autor: zaft

Aufgabe
Spalten sie so weit wie möglich auf:


Sorry,
nochmal zu Aufgabe 2
= (lg0,1107 + lg [mm] \wurzel[3]{23,4}) [/mm] - (lg [mm] \wurzel{0,85} [/mm] ^{3} + lg0,019 ^{2})
Ich soll ja kein Endergebnis ausrechnen, also wars das ja, oder?

Liebe Grüsse

Bezug
                                        
Bezug
Rechnen mit Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mo 05.06.2006
Autor: Seppel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo zaft!

Super! :-)

Eine Umformung könnte man noch vornehmen:

$\lg(0,1107)+\lg(\wurzel[3]{23,4})-\lg\left(\wurzel(0,85^3)\right)-\red{2*\lg(0,019)}}$.

Es gilt nämlich: $\lg(a^b)=b*\lg(a)$.

Dieser Schritt ist aber nicht unbedingt notwendig - du kannst ruhig schon da aufhören, wo du bist.

Also [daumenhoch]

Liebe Grüße
Seppel

Bezug
                                                
Bezug
Rechnen mit Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 Mo 05.06.2006
Autor: zaft

Also nochmals vielen Dank für deine Hilfe.

Gruss

Bezug
                                                        
Bezug
Rechnen mit Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mo 05.06.2006
Autor: Seppel

Hallo zaft!

Gern geschehen - helfe immer, wo ich kann! :-)
Und wie gesagt, noch viel Erfolg mit dem Abitur.

Liebe Grüße
Seppel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de