Rechteck- & Jordan-Nullmenge < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:30 Sa 24.10.2009 | Autor: | tonno |
In meiner Vorlesung zu Maß- und Integrationstheorie wurde der Begriff der Rechteckmengen uns später der Jordan-Nullmenge eingeführt. Mir fehlt aber vollkommen die Vorstellung, was dies eigentlich ist. In der Literatur finde Ich auch nicht sonderlich viel dazu, d.h. etwas was ich verstehen kann, da unser Prof. den Einstieg über Riemann-Integrale macht und der Begriff vom Maß etc. noch nicht definiert oder eingeführt wurde.
Also wie kann Ich mir Rechteckmengen im höher-dimensionalen vorstellen? Wir haben eine Rechteckmenge R so def.: R = [mm] [a_{1}, b_{1}]\times [/mm] ... [mm] \times [a_{n}, b_{n}] \subset \IR^{n}. [/mm] Wäre bspw. im [mm] \IR^{2} [/mm] eine Rechteckmenge ein beliebiges Rechteck (eingeschränkt durch a und b) und im [mm] \IR^{3} [/mm] ein Quader?
Zur Jordan-Nullmenge: Wir haben das Jordan-Maß noch nicht def.. Einzige def. zu J-Nullmenge:
N [mm] \subset \IR^{n} [/mm] heißt J-NM [mm] \gdw \forall \varepsilon [/mm] > 0 ex. Folge von Rechteckmengen [mm] (R_k)_{k \in \IN} [/mm] s.d. gilt:
(i) N [mm] \subset \bigcup_{k \in \IN} R_k [/mm] und
(ii) [mm] \summe_{k=1}^{\infty} v_n (R_k) [/mm] < [mm] \varepsilon.
[/mm]
ja das ist alles. [mm] V_n [/mm] ist das "Jordan-Volumen". Also wer kann mir helfen?
PS: Mir fehlt dann dahingehend auch ein Ansatz für folgendes:
Zeige: N [mm] \subset \IR^{n-1} [/mm] Nullmenge [mm] \Rightarrow [/mm] N [mm] \times \IR^{1} \subset \IR^{n} [/mm] ist J-NM. Danke für Hinweise.
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 17:25 Sa 24.10.2009 | Autor: | tonno |
zu meiner PS-Aufgabe:
bezogen auf N Teilmenge von [mm] \IR^1 [/mm] bedeutet das also, es gibt eine Überdeckung von N durch eine Rechteckmenge, deren "Volumen" / Länge kleiner gleich [mm] \varepsilon [/mm] ist. D.h. ich finde eine [mm] \varepsilon [/mm] -dünne (offenes?) Überdeckung (in dem Fall Rechteck) von [mm] N\times \IR=M. [/mm] Und daraus kann Ich schließen, dass M eine Nullmenge ist. Geht das so?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Mo 26.10.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:27 Sa 24.10.2009 | Autor: | rainerS |
Hallo!
> In meiner Vorlesung zu Maß- und Integrationstheorie wurde
> der Begriff der Rechteckmengen uns später der
> Jordan-Nullmenge eingeführt. Mir fehlt aber vollkommen die
> Vorstellung, was dies eigentlich ist. In der Literatur
> finde Ich auch nicht sonderlich viel dazu, d.h. etwas was
> ich verstehen kann, da unser Prof. den Einstieg über
> Riemann-Integrale macht und der Begriff vom Maß etc. noch
> nicht definiert oder eingeführt wurde.
> Also wie kann Ich mir Rechteckmengen im
> höher-dimensionalen vorstellen? Wir haben eine
> Rechteckmenge R so def.: R = [mm][a_{1}, b_{1}]\times[/mm] ...
> [mm]\times [a_{n}, b_{n}] \subset \IR^{n}.[/mm] Wäre bspw. im
> [mm]\IR^{2}[/mm] eine Rechteckmenge ein beliebiges Rechteck
> (eingeschränkt durch a und b) und im [mm]\IR^{3}[/mm] ein Quader?
Richtig.
> Zur Jordan-Nullmenge: Wir haben das Jordan-Maß noch nicht
> def.. Einzige def. zu J-Nullmenge:
> N [mm]\subset \IR^{n}[/mm] heißt J-NM [mm]\gdw \forall \varepsilon[/mm] > 0
> ex. Folge von Rechteckmengen [mm](R_k)_{k \in \IN}[/mm] s.d. gilt:
> (i) N [mm]\subset \bigcup_{k \in \IN} R_k[/mm] und
> (ii) [mm]\summe_{k=1}^{\infty} v_n (R_k) < \varepsilon.[/mm]
>
> ja das ist alles. [mm]V_n[/mm] ist das "Jordan-Volumen". Also wer
> kann mir helfen?
Schau dir mal diese Grafik an! Die aüßere, violette Linie begrenzt die Vereinigung
[mm]\bigcup_{k \in \IN} R_k[/mm]
Wenn die Vereinigung dieser Rechteckmengen beliebig kleines Volumen hat (weil es immer kleiner als ein beliebig kleines [mm] $\varepsilon$ [/mm] ist), nenne ich N eine Jordan-Nullmenge.
> PS: Mir fehlt dann dahingehend auch ein Ansatz für
> folgendes:
> Zeige: [mm]N \subset \IR^{n-1}[/mm] Nullmenge [mm]\Rightarrow N \times \IR^{1} \subset \IR^{n}[/mm]
> ist J-NM. Danke für Hinweise.
Ist N Jordan-Nullmenge oder Nullmenge bzgl. eines anderen Maßes?
Wenn die Jordan-Nullmenge gemeint ist:
Nach Voraussetzung existiert für jedes [mm] $\varepsilon [/mm] >0$ eine Folge [mm] $R_k\in\IR^{n-1}$, [/mm] sodass
[mm] N \subset \bigcup_{k \in \IN} R_k[/mm] und [mm] \summe_{k=1}^{\infty} v_{n-1} (R_k) < \varepsilon [/mm].
Bedenke Folgendes: Ist [mm] $[a_n,b_n] \subset \IR$, [/mm] so ist [mm] $N\times [a_n,b_n]$ [/mm] eine Jordannullmenge, denn
[mm] N\times[a_n,b_n] \subset \bigcup_{k \in \IN}(R_k\times [a_n,b_n]) [/mm] und [mm] \summe_{k=1}^{\infty} v_{n} (R_k\times [a_n,b_n] ) = (b_n-a_n) \summe_{k=1}^{\infty} v_{n-1} (R_k) < (b_n-a_n)\varepsilon [/mm].
Kannst du den Schritt vom endlichen Intervall zu ganz [mm] $\IR$ [/mm] machen?
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 15:37 So 25.10.2009 | Autor: | tonno |
um es auf den gesamten [mm] \IR^n [/mm] zu bringen nehme Ich an, dass es eine Folge von Rechteckmengen auf [mm] \IR^1 [/mm] gibt, sodass diese den gesamten [mm] \IR^1 [/mm] überdecken. von dieser Folge bilde Ich die unendliche Reihe (also von k=1 bis unendlich) die sozusagen das Volumen darstellt. Multipliziert mit der Reihe von [mm] R_k [/mm] ist dies aber, wenn ich [mm] \varepsilon [/mm] hinreichend klein nehme immer noch kleiner gleich [mm] \varepsilon. [/mm] und damit ist N kreuz [mm] \IR^n [/mm] Jordan-Nullmenge.
Geht das so vom Prinzip her? Also eine Überdeckung von [mm] \IR [/mm] zu finden usw.?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Di 27.10.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|