www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Rechteckfunktion als Störglied
Rechteckfunktion als Störglied < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteckfunktion als Störglied: Bestimmung einer spez. Lösung
Status: (Frage) beantwortet Status 
Datum: 00:14 Di 08.12.2009
Autor: Lughor

Aufgabe
Es sei [mm] f(t)=\begin{cases} 1 \mbox{ , wenn t } \in [2k, 2k+1], \mbox{ mit k} \in \IN \cup \{ 0 \} \\ 0 \mbox{ sonst} \end{cases} [/mm]
Wir betrachten die Differentialgleichung x''(t) + x'(t) + 3x(t) = f(t).

(a) Welchen inhaltlichen Sinn hat diese Differentialgleichung?
(b) Klassifizieren Sie die Dgl.
(c) Welche Möglichkeiten sehen Sie, das zugehörige Anfangswertproblem x(0)=0, x'(0)=0 zu lösen, sagen wir für t [mm] \ge [/mm] 0?
(Es geht darum, einen Weg oder gar mehrere Wege zu beschreiben, dabei eine möglichst weitgehende Anweisung zu geben, ohne diese komplett auszuführen.)

Zu meinen Problemen.

(a) Fällt jemanden mehr Sinn ein als Schwingungsgleichung im Schwingfall?

(b) Dürfte ziemlich klar sein.
Lineare DGL 2. Ord., inhomogen, exlizit (sofort in explizite Form schreibbar) und autonom.

(c) Die homogene Lösung kann man sofort mit der Lösungsformel für die Schwingungsgleichung schreiben. Dann noch die Anfangsbedingung eingesetzt und ich komme auf: x(t)=0 .
Ziemlich langweilig und ich habe mich hoffentlich nicht vertan, aber die Lösung erfüllt die homogene DGL und auch das AWP.


Jetzt aber das Problem mit der speziellen Lösung.
Stückweise ist f(t) konstant, aber trotzdem kann man das Störglied nicht als Konstant betrachten. Würde man die spezielle Lösung zweigeteilt berechnen, so käme man auf x(t)=0 für f(t)=0 und [mm] x(t)=\bruch{1}{3} [/mm] für f(t)=1.
Dann wäre aber x(t) nicht mehr stetig und damit auch nicht mehr diffbar.
Da aber die Lösung nur auf einem Intervall erklärt ist, wäre sie nur auf [0,1) für k=0 bzw. auf [0,2k) sonst erklärt.

Was meint ihr?
Kennt ihr andere Lösungswege?
Ergeben meine Ausführungen soweit Sinn?

Würde mich über baldige Hilfe freuen.

        
Bezug
Rechteckfunktion als Störglied: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Di 08.12.2009
Autor: leduart

Hallo
ich seh nur den Weg, f(t) in ne Fourrierreihe zu entwickeln, und dann mit mehr oder weniger vielen gliedern zu arbeiten.
Gruss leduart

Bezug
                
Bezug
Rechteckfunktion als Störglied: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Di 08.12.2009
Autor: Lughor

Fourierreihen sind leider nicht Thema der Vorlesung, daher auch als Lösung nicht so ideal. Allerdings sind Reihen und Funktionenfolgen durchaus Thema, so dass solche Ansätze möglich wären.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de