www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Rechtsnebenklassen
Rechtsnebenklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechtsnebenklassen: Korrektur / Ergänzung
Status: (Frage) beantwortet Status 
Datum: 18:31 Mo 28.11.2016
Autor: Chrizzldi

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Entscheiden Sie für die folgenden Gruppen $G$, Untergruppen $U\leqG$ und $a,b \in G$ jeweils, ob $a \sim_U b$ gilt, also ob $a$ und $b$ in derselben Rechtsnebenklasse von $U$ in $G$ liegen.
(a) $G = (\mathbb{Z}, +), U = 10\mathbb{Z}, a = -3, b = 3$
(b) $G = (\mathbb{Z}_{10}, \oplus), U = \{0, 5\}, a = 7, b = 2$
(c) $G = (F(\mathbb{R},\mathbb{R)), + ), U = \{ f : \mathbb{R} \rightarrow \mathbb{R} | f(x) = -f(-x)\}$ (ungerade Funktionen),

$a : \mathbb{R} \rightarrow \mathbb{R} : x \rightarrow x^3 + x^2 + 1$,
$b : \mathbb{R} \rightarrow \mathbb{R} : x \rightarrow x^2 + x + 1$


(d) $G = ( M_3(\mathbb{R}), +), U = \{A \in G | A^T = A\}$ (symmetrische Matrizen).

$ a = \begin{pmatrix}
1 & 4 & 2  \\
0 & 3 & 7  \\
6 & 8 & -1  \\
\end{pmatrix},
b = \begin{pmatrix}
0 & 1 & 7  \\
-3 & 5 & 3  \\
7 & 4 & -3  \\
\end{pmatrix}$

Hallo liebe Mathefreunde,

ich beschäftige mich für obige Aufgabe gerade mit Rechtsnebenklassen und hoffe auf etwas Unterstützung :)

Allgemeine Definition für die Elemente einer Rechtsnebenklasse ist erstmal:
$a, b \in G : a \sim_U b : \Leftrightarrow \exists u \in U : ua = b$
Wenn ich das richtig verstehe, dann hat $U$ mehrere Nebenklassen und ich muss untersuchen in welchen Nebenklassen $a$ bzw. $b$ liegen. Nur so kann ich entscheiden ob $a,b$ in der gleichen Rechtsnebenklasse von $U$ liegen. Okay, gegeben dem Fall ich habe mich hier nicht vertan erhalte ich für:

(a) folgende Untergruppen:
${10\mathbb{Z} + 0, 10\mathbb{Z} + 1, \ldots, 10\mathbb{Z} + 9}$
hier finde ich auch die Untergruppe des Aufgabenteils wieder, nur ist mir schleierhaft, wie sich in dieser $a$ und $b$ befinden soll. Ich würde also entscheiden, dass $a, b$ nicht in $U = 10\mathbb{Z} liegt. Aber liegt dann $a, b$ überhaupt in einer gemeinsamen Untergruppe? Rechne ich für $a$ und $b$ aus:
$10k + 7 = -3$ für $k = -1$ und $10k + 3$ für $k = 0$ ergibt sich keine gemeinsame Untergruppe.

Irgendwie bin ich mir absolut nicht sicher, ob ich das so richtig mache.

Für eine kurze Rückmeldung wäre ich sehr dankbar, weil ich so nicht mit den anderen Teilaufgaben fortfahren will...

Merci und liebe Grüße,
Chris

        
Bezug
Rechtsnebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 28.11.2016
Autor: leduart

Hallo
du hast mit a und b nicht in derselben Restklasse und deinen Argument dazu recht.
nur meinst du nicht Untergruppe sondern Restklasse.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de