www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Rechtsnebenklassen
Rechtsnebenklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechtsnebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Di 11.05.2010
Autor: MontBlanc

Aufgabe
Sei [mm] G=S_3 [/mm] , sei H die zyklische Untergruppe erzeugt durch den 2 zykel (1,2) . Geben Sie alle Rechtsnebenklassen von H an.

Hallo,

ich bin mir hier nicht ganz sicher, wie das funktioniert, die Untergruppe erzeugt durch (1,2) sind die Permutationen:

(12), (1)(2)(3) also die Identität und der gegebene zykel. Wie gebe ich jetzt die unterschiedlichen Rechtsnebenklassen an ? Es muss doch einen systematischen Weg geben da vorzugehen, oder ?

Lg

        
Bezug
Rechtsnebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:46 Mi 12.05.2010
Autor: felixf

Hallo!

> Sei [mm]G=S_3[/mm] , sei H die zyklische Untergruppe erzeugt durch
> den 2 zykel (1,2) . Geben Sie alle Rechtsnebenklassen von H
> an.
>  Hallo,
>  
> ich bin mir hier nicht ganz sicher, wie das funktioniert,
> die Untergruppe erzeugt durch (1,2) sind die
> Permutationen:
>  
> (12), (1)(2)(3) also die Identität und der gegebene zykel.
> Wie gebe ich jetzt die unterschiedlichen Rechtsnebenklassen
> an ? Es muss doch einen systematischen Weg geben da
> vorzugehen, oder ?

Ja. (Das wurd hier vermutlich auch schon 100x besprochen ;-) )

Nimm dir irgendein Element [mm] $g_1$ [/mm] aus [mm] $S_3$. [/mm] Berechne die Nebenklasse $H [mm] g_1$. [/mm]

Dann nimm dir ein weiteres Element [mm] $g_2$, [/mm] welches nicht in $H [mm] g_1$ [/mm] liegt. Berechne $H [mm] g_2$. [/mm]

Nun nimm dir ein Element [mm] $g_3$, [/mm] welches weder in $H [mm] g_1$ [/mm] noch in $H [mm] g_2$ [/mm] liegt. Berechne $H [mm] g_3$ [/mm] (das ist besonders einfach, da du hier schon wissen kannst was herauskommt).

In einem allgemeineren Szenario fuer $G$ und $H$ musst du immer so weiter machen, in diesem Fall bist du jedoch hier schon fertig, da es nach Lagrange [mm] $\frac{|G|}{|H|} [/mm] = [mm] \frac{3!}{2} [/mm] = 3$ Rechtsnebenklassen von $H$ in $G$ gibt.

LG Felix


Bezug
                
Bezug
Rechtsnebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Mi 12.05.2010
Autor: MontBlanc

Hi felix,

danke für die antwort. Mir ist klar, dass es euch wahrscheinlich schon zu den Ohren rauskommen, das ändert leider nichts daran, dass ich es leider noch nicht ganz verstanden habe.

Zurück zur Frage:

Also ich habe H gegeben durch [mm] H=\{(12),(1)(2)(3)\}. [/mm]

[mm] G=\{(123),(132),(12),(13),(23);(1)(2)(3)\} [/mm]

Es gibt also drei Rechtsnebenklassen, ich nehme mir jetzt ein Element aus G, zum Beispiel (123) und bestimme H(123) , also

(12)*(123)=(13)(2)
(1)(2)(3)*(123)=(123)

Nun nehmen wir ein anderes Element aus G was nicht in H(123) ist, das wäre z.B. (132) . also H(132)=(12)(132)=(23)(1) und (1)(2)(3)*(132)=(132)

Die andere Rechtsnebenklasse ist H(1)(2)(3) . Damit wäre ich dann durch und die verschiedenen Rechtsnebenklassen sind:

H(1)(2)(3) , H(123) , H(132)

Stimmts ?

Lg

Bezug
                        
Bezug
Rechtsnebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Do 13.05.2010
Autor: Arcesius

Hallo

> Hi felix,
>  
> danke für die antwort. Mir ist klar, dass es euch
> wahrscheinlich schon zu den Ohren rauskommen, das ändert
> leider nichts daran, dass ich es leider noch nicht ganz
> verstanden habe.
>  
> Zurück zur Frage:
>  
> Also ich habe H gegeben durch [mm]H=\{(12),(1)(2)(3)\}.[/mm]
>
> [mm]G=\{(123),(132),(12),(13),(23);(1)(2)(3)\}[/mm]
>  
> Es gibt also drei Rechtsnebenklassen, ich nehme mir jetzt
> ein Element aus G, zum Beispiel (123) und bestimme H(123) ,
> also
>  
> (12)*(123)=(13)(2)
>  (1)(2)(3)*(123)=(123)
>  

Öhm.. das stimmt hier nicht.. rechne nochmals [mm] (12)\circ(123) [/mm] aus.. da sollte (23) rauskommen.

> Nun nehmen wir ein anderes Element aus G was nicht in
> H(123) ist, das wäre z.B. (132) . also
> H(132)=(12)(132)=(23)(1) und (1)(2)(3)*(132)=(132)
>  
> Die andere Rechtsnebenklasse ist H(1)(2)(3) . Damit wäre
> ich dann durch und die verschiedenen Rechtsnebenklassen
> sind:
>  
> H(1)(2)(3) , H(123) , H(132)
>  
> Stimmts ?

Du musst die Elemente hinschreiben.

Also (ich schreibe nun id anstatt (1)(2)(3)...)

Zuerst bemerkst du, dass H(id) = H(12) = H = [mm] \underline{\{id,(12)\}} [/mm] (Siehst du es?). Das ist schonmal ne Rechtsnebenklasse..

Dann nimmste z.B dein Element wie oben (123) und berechnest [mm] (12)\circ(123) [/mm] = (23) und [mm] (id)\circ(123) [/mm] = (123)
Das gibt dir eine zweite Rechtsnebenklasse [mm] \underline{\{(23),(123)\}} [/mm]

Jetzt noch ein drittes Element. (z.B wie du genommen hast (132), aber dann richtig ausrechnen! Denn [mm] (12)\circ(132) \neq [/mm] (23)...).


Im prinzip hattest du verstanden, was zu machen ist.. aber du musst die Zykel halt richtig ausrechnen :)

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de