www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Reduzierte Stufenform, Kern
Reduzierte Stufenform, Kern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reduzierte Stufenform, Kern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:01 Mo 06.01.2014
Autor: kaykay_22

Aufgabe
Bestimme eine Basis des Zeilenraums von A.
Bestimme eine Basis des Kerns von A.

Ich habe bereits die reduzierte Stufenform für A:

[mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } [/mm]

Als Basis des Zeilenraums habe ich einfach die drei Zeilenvektoren genommen, die keine Nullzeilen sind.

Jetzt will ich den Kern davon berechnen. Das müsste doch mit der reduzierten Stufenform auch gehen oder? Kann mir das jemand erklären?

Gruss und Merci

        
Bezug
Reduzierte Stufenform, Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Mo 06.01.2014
Autor: angela.h.b.


> Bestimme eine Basis des Zeilenraums von A.
>  Bestimme eine Basis des Kerns von A.
>  Ich habe bereits die reduzierte Stufenform für A:
>  
> [mm]\pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
>  
> Als Basis des Zeilenraums habe ich einfach die drei
> Zeilenvektoren genommen, die keine Nullzeilen sind.

Hallo,

ja, das kannst Du tun.

Die führenden Zeilenelemente Deiner ZSF stehen in Spalte 1,3 und 5.
Also kannst Du die 2. und 4. Variable frei wählen.

Mit
[mm] x_2:=t [/mm] und
[mm] x_4:= [/mm] s

erhältst Du aus Zeile 3
[mm] x_5=0, [/mm]

aus Zeile 2
    [mm] x_3+4x_4=0 [/mm] <==>
[mm] x_3=-4s, [/mm]

und aus Zeile 1
    [mm] x_1+2x_2+3x_4=0 [/mm] <==>
[mm] x_1=-2t-3s. [/mm]

Alle Lösungsvektoren [mm] \vektor{x_1\\\vdots\\x_5} [/mm] haben die Gestalt

[mm] \vektor{x_1\\x_2\\x_3\\x_4\\x_5}=\vektor{-2t-3s\\t\\-4s\\s\\0}=t\vektor{-2\\1\\0\\0\\0}+s\vektor{-3\\0\\-4\\1\\0}, [/mm]

und die beiden Vektoren [mm] \vektor{-2\\1\\0\\0\\0},\vektor{-3\\0\\-4\\1\\0} [/mm] bilden zusammen eine Basis des Kerns.

Andere Vorgehensweise zur Bestimmung des Kerns, wenn man die red. ZSF hat:
Nullzeilen weg:

[mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } [/mm] --> [mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 } [/mm]

Nullzeile so einscheiben, daß die führenden Zeilenelemente auf der Diagonalen stehen:

--> [mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0&0&0&0&0\\0 & 0 & 1 & 4 & 0 \\ 0&0&0&0&0\\0 & 0 & 0 & 0 & 1 } [/mm]

Einheitsmatrix subtrahieren:

---> [mm] \pmat{ 0& 2 & 0 & 3 & 0 \\ 0&-1&0&0&0\\0 & 0 & 0 & 4 & 0 \\ 0&0&0&-1&0\\0 & 0 & 0 & 0 & 0} [/mm]        

In den Nichtnullspalten steht nun eine Basis des Kerns.

LG Angela




>  
> Jetzt will ich den Kern davon berechnen. Das müsste doch
> mit der reduzierten Stufenform auch gehen oder? Kann mir
> das jemand erklären?
>  
> Gruss und Merci


Bezug
                
Bezug
Reduzierte Stufenform, Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mo 06.01.2014
Autor: kaykay_22

Danke :-)

Sind beide Verfahren notwendig zu wissen? Also gibt es Möglichkeiten, dass eines der Verfahren nicht funktioniert? Oder reicht es z.B. nur das erste Verfahren zu können?

Bezug
                        
Bezug
Reduzierte Stufenform, Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mo 06.01.2014
Autor: angela.h.b.

Hallo,

ein Verfahren reicht - falls es ein Begrenzung für Gepäckstücke gibt.

Die Verfahren funktionieren beide immer.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de