www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reelle Zahlenfolgen und Metrik
Reelle Zahlenfolgen und Metrik < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelle Zahlenfolgen und Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Do 09.01.2014
Autor: U_Brehm

Aufgabe
Sei $s$ die Menge aller reellen Zahlenfolgen. Für [mm] $x=(x_n)_{n \in \IN}, y=(y_n)_{n \in \IN} \in [/mm] s$ definieren wir $d(x,y):= [mm] \summe_{i=1}^{\infty}\bruch{1}{2^n}*\bruch{|x_n-y_n|}{1+|x_n-y_n|}$. [/mm] Beweisen Sie, dass $d$ eine Metrik ist.

Die ersten beiden Eigenschaften konnte ich schon zeigen. Nur die Dreiecksungleichung bereitet mir etwas zu schaffen:

[mm] $d(x,y)+d(y,z)=\summe_{i=1}^{\infty}\bruch{1}{2^n}*\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\summe_{i=1}^{\infty}\bruch{1}{2^n}*\bruch{|y_n-z_n|}{1+|y_n-z_n|}=\summe_{i=1}^{\infty}(\bruch{1}{2^n}*\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{1}{2^n}*\bruch{|y_n-z_n|}{1+|y_n-z_n|})=\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{|y_n-z_n|}{1+|y_n-z_n|}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|*(1+|y_n-z_n|)+|y_n-z_n|*(1+|x_n-y_n|)}{(1+|x_n-y_n|)*(1+|y_n-z_n|)}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|x_n-y_n||y_n-z_n|+|y_n-z_n|+|y_n-z_n||x_n-y_n|}{(1+|x_n-y_n|)*(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|y_n-z_n|}{(1+|x_n-y_n|)*(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-z_n|}{(1+|x_n-y_n|)*(1+|y_n-z_n|)}) [/mm]
= [mm] \summe_{i=1}^{\infty}\bruch{1}{2^n}* \bruch{|x_n-z_n|}{1+|x_n-y_n|+|y_n-z_n|+|x_n-y_n||y_n-z_n|}=...=d(x,z)$ [/mm]

Dann mir jemand beim '...' helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reelle Zahlenfolgen und Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Do 09.01.2014
Autor: Gonozal_IX

Hiho,

na offensichtlich gilt doch:

[mm] $|x_n [/mm] - [mm] y_n| [/mm] + [mm] |y_n [/mm] - [mm] z_n| [/mm] + [mm] |x_n [/mm] - [mm] y_n||y_n [/mm] - [mm] z_n| \ge |x_n [/mm] - [mm] y_n| [/mm] + [mm] |y_n [/mm] - [mm] z_n| \ge |x_n [/mm] - [mm] z_n|$ [/mm]

edit: Das bringt natürlich nix hier...... zeige stattdessen direkt per Äquivalenzumformung

[mm] $\left(\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{|y_n-z_n|}{1+|y_n-z_n|}\right) \ge \bruch{|x_n-z_n|}{1+|x_n-z_n|}$ [/mm]

Gruß,
Gono.

Bezug
                
Bezug
Reelle Zahlenfolgen und Metrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Do 09.01.2014
Autor: U_Brehm

$ [mm] $d(x,y)+d(y,z)=\summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{}\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{}\bruch{|y_n-z_n|}{1+|y_n-z_n|}=\summe_{i=1}^{\infty}(\bruch{1}{2^n}\cdot{}\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{1}{2^n}\cdot{}\bruch{|y_n-z_n|}{1+|y_n-z_n|})=\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{|y_n-z_n|}{1+|y_n-z_n|}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|\cdot{}(1+|y_n-z_n|)+|y_n-z_n|\cdot{}(1+|x_n-y_n|)}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|x_n-y_n||y_n-z_n|+|y_n-z_n|+|y_n-z_n||x_n-y_n|}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|y_n-z_n|}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-z_n|}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{} \bruch{|x_n-z_n|}{1+|x_n-y_n|+|y_n-z_n|+|x_n-y_n||y_n-z_n|} [/mm]
[mm] \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{} \bruch{|x_n-z_n|}{1+|x_n-y_n|+|y_n-z_n|}\ge \summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{} \bruch{|x_n-z_n|}{1+|x_n-x_n|}=d(x,y) \Rightarrow d(x,y)+d(y,z)\ge [/mm] d(x,z)

Bezug
                        
Bezug
Reelle Zahlenfolgen und Metrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Do 09.01.2014
Autor: Gonozal_IX

Hiho,

nein, das ist falsch. Die letzte Abschätzung wäre [mm] \le [/mm] und damit nicht in die richtige Richtung.

Hab auch meine Antwort korrigiert. Du hast vorher zu stark abgeschätzt.

Gruß,
Gono.

Bezug
                
Bezug
Reelle Zahlenfolgen und Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Do 09.01.2014
Autor: U_Brehm

Wieso kann ich das direkt schlussfolgern?

Bezug
                        
Bezug
Reelle Zahlenfolgen und Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Do 09.01.2014
Autor: Gonozal_IX

Hiho,

das kannst du nicht schlußfolgern, das sollst du durch Umformungen zeigen. Forme dazu die Ungleichung so lange äquivalent um, bis etwas wahres da steht.

Gruß,
Gono.

Bezug
        
Bezug
Reelle Zahlenfolgen und Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Do 09.01.2014
Autor: Richie1401

Hallo,

Ich schreibe mal vereinfacht:
[mm] d(x,y):=\bruch{|x-y|}{1+|x-y|} [/mm]
überzeuge dich davon, dass es bereits reicht, die folgende Ungleichung zu zeigen:

   $d(x,z)<d(x,y)+d(y,z)$

Dir sollte auffallen, bzw. bekannt vorkommen, dass $|x-y|=:m(x,y)$ selbst auch eine Metrik darstellt. Damit arbeite ich jetzt:

[mm] d(x,z)=\frac{m(x,z)}{1+m(x,z)}=\frac{1+m(x,z)-1}{1+m(x,z)}=1-\frac{1}{1+m(x,z)}\le1-\frac{1}{1+m(x,y)+m(y,z)} [/mm]

     [mm] \le\frac{m(x,y)+m(y,z)}{1+m(x,y)+m(y,z)}=\frac{m(x,y)}{1+m(x,y)+m(y,z)}+\frac{m(y,z)}{1+m(x,y)+m(y,z)}\le\frac{m(x,y)}{1+m(x,y)}+\frac{m(y,z)}{1+m(y,z)} [/mm]

     $=d(x,y)+d(y,z)$


Wichtig: Du musst noch zeigen, dass die Reihe überhaupt konvergiert. (=> Majorantenkriterium)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de