www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Regelfunktionen
Regelfunktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 Do 19.05.2011
Autor: Theoretix

Aufgabe
Die Funktion [mm] f:[-1,1]\to\IR [/mm] sei für [mm] x\in[-1,1] [/mm] definiert durch

[mm] f(x):=\begin{cases} \frac{1}{n+2}, & \mbox{für } x\in[-\frac{1}{n},-\frac{1}{n+1}) \cup (\frac{1}{n+1},\frac{1}{n}], n\in\IN \mbox{} \\ 0, & \mbox{für } x=0 \mbox{ } \end{cases} [/mm]

Zeigen Sie, dass f eine Regelfunktion ist, indem Sie eine gegen f konvergierende Folge von Treppenfunktionen angeben.

Hallo zusammen,

Ich habe die Funktion f doch so definiert, dass sie für x=0 Null ist und sonst links und rechts von Null zwei Folgen habe, die gegen 0 konvergieren ? [mm] (-\frac{1}{n},-\frac{1}{n+1} [/mm] von links und [mm] \frac{1}{n+1}, \frac{1}{n} [/mm] von rechts).

Jetzt soll ich irgendwie eine Folge von Treppenfunktionen angeben, die gegen diese Funktion konvergiert, das bedeutet doch, es muss für meine Folge von Treppenfunktionen [mm] (\varphi_n)_{n\in\IN} [/mm] gelten:

[mm] \limes_{n\rightarrow\infty}\vert f-\varphi_n\vert=0, [/mm]

aber mich verwirtt die Definiion der Funktion ein wenig, denn diese ist doch schon über Folgen definiert? Wie kann ich jetzt eine Folge von Treppenfunktionen angeben, die gegen f konvergieren?

Wäre dankbar für Hilfe!

Grüße

        
Bezug
Regelfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 19.05.2011
Autor: Rauchzart

Hi,
die Funktion ist nicht über Folgen definiert, sondern jeweils in den Intervallen  [mm] [-\frac{1}{n},-\frac{1}{n+1} [/mm] ) [mm] \cup (\frac{1}{n+1}, \frac{1}{n}] [/mm] konstant mit einem von n abhängigen Wert, hat also unendlich viele Stufen.
Du musst eine Folge finden, die nur endlich Stufen hat und in der Supremumsnorm konvergiert. Am besten durch geschickte Abschneiden.

Bezug
                
Bezug
Regelfunktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:21 Do 19.05.2011
Autor: Theoretix

Danke für die Antwort!

Kann ich als Treppenfunktion nicht einfach „dieselbe Funktion“ nehmen, nur dass ich n eben nicht beliebig wähle, sondern beschränke durch [mm] n\in[1,...,k] [/mm] ?

Aber wie kann ich dann konkret zeigen, dass diese Funktionenfolge (der Treppenfunktionen) in der Supremumsnorm gegen f konvergiert?

Gruß

Bezug
                        
Bezug
Regelfunktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 21.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de