www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "z-transformation" - Region of convergence
Region of convergence < z-transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Region of convergence: Berechnen
Status: (Frage) beantwortet Status 
Datum: 19:20 Fr 24.01.2014
Autor: bandchef

Aufgabe
Gegeben ist folgende Differenzengleichen: $y(n) = 0,81 [mm] \cdot [/mm] y(n-2) + x(n) - x(n-2)$

Geben sie hierzu den korrekten ROC an.

Hi Leute! Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die z-Transformierte sieht so aus:

$H(z) = [mm] \frac{1-z^{-2}}{1-0,81\cdot z^{-2}}$ [/mm]

Nun möchten ich eben noch den ROC berechnen. Wie macht man das? Muss ich hierzu nun die Polstellen berechnen? Und wie geht's dann weiter?

Man muss ja zum angeben des ROC auch noch die "Artung" des LTI System wissen.
Die Impulsantwort des LTI-Systems ist rechtsseitig (die Differenzgleichung enthält nur Verzögerungsglieder) und unendlich (die Differenzengleichung enthält rekursive Glieder)

        
Bezug
Region of convergence: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Fr 24.01.2014
Autor: Valerie20


> Gegeben ist folgende Differenzengleichen: [mm]y(n) = 0,81 \cdot y(n-2) + x(n) - x(n-2)[/mm]

>

> Geben sie hierzu den korrekten ROC an.
> Hi Leute! Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Die z-Transformierte sieht so aus:

>

> [mm]H(z) = \frac{1-z^{-2}}{1-0,81\cdot z^{-2}}[/mm]

>

> Nun möchten ich eben noch den ROC berechnen. Wie macht man
> das? Muss ich hierzu nun die Polstellen berechnen? Und wie
> geht's dann weiter?

Ja, berechne die Polstellen.
In deinem Skript wird stehen, wann die Z-Transformierte konvergiert. Soviele Möglichkeiten gibt es nun nicht.

Bezug
                
Bezug
Region of convergence: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:50 Sa 25.01.2014
Autor: bandchef

Das hier irgendwas konvergiert, steht hier leider nicht. Aber ich hab hier nun mal die Polstellen des Nenners berechnet:

Ich hab das H(z) erstmal mit [mm] $\frac{z^2}{z^2}$ [/mm] multipliziert. Ich komm dann auf das Nennerpolynom: $X(z) = [mm] z^2-0,81 \Rightarrow z_{p \text{ } 1,2} [/mm] = [mm] \frac{-0\pm\sqrt{0^2 - 4 \cdot 1 \cdot (-0,81)}}{2\cdot 1} [/mm] = ... = [mm] \pm [/mm] 0,9$

Da eben nun das LTI-System rechtsseit und unendlich ist, ergibt sich der ROC zu $|z| > 0,9$ ablesen, weil wir zu jedem der 6 Fälle wie in ROC geartet sein kann (unendlich linksseitig, unendlich rechtsseitig, unendlich beidseitig; endlich linksseitig, endlich linksseitig, endlich beidseitig), Beispiele aufgeschrieben haben. Welches Beispiel hier nun bei dieser Aufgabe passt, kann man also so aus meinem Skript ablesen.

Wie wäre aber nun der ROC geartet, wenn ich zwei Unterschiedliche Polstelle gefunden hätte? Also Pole in Form von: [mm] $z_{p \text{ } 1,2} [/mm] = [mm] \left\{ -\frac{1}{2}, \frac{3}{4} \right\}$. [/mm] Welchen der beiden Pole muss ich dann an die Stelle des Fragezeichens im ROC schreiben: $|z| > ?$. (Hier bin ich natürlich auch davon ausgegangen, dass das LTI-System genauso unendlich und rechtsseitg ist!)

Bezug
                        
Bezug
Region of convergence: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 So 26.01.2014
Autor: bandchef

Kann mir denn wirklich keiner helfen, bei diesem Problem?

Bezug
                        
Bezug
Region of convergence: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 27.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de