www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "GeoGebra" - Regression: logist. Wachstum
Regression: logist. Wachstum < GeoGebra < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regression: logist. Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 21.12.2010
Autor: Martinius

Hallo,

ich habe eine Frage zur Funktionsweise von Geogebra betr. das logistische Wachstum.

Ausgehend von:

[mm] $y(t)=\frac{G}{1+k*exp(-rGt)}$ [/mm]


mit G = obere Schranke des Wachstums, A = y(0) Anfangswert der Population bei t = 0 und [mm] $k=\frac{G-A}{A}$ [/mm]

kommt man auf die linearisierte Form:


$z(t) = [mm] ln\left(\frac{1}{y}-\frac{1}{G} \right)=-r*G*t+ ln\left(\frac{1}{A}-\frac{1}{G} \right)$ [/mm]

Für die Regressionsgerade werden die t-Werte gegen die logarithmierten modifizierten y-Werte:

$z(t) = [mm] ln\left(\frac{1}{y}-\frac{1}{G} \right)$ [/mm]

aufgetragen. Dazu benötigt man aber schon den Zahlenwert für G - für die obere Wachstumsschranke! Auch in meinem (käuflich erworbenen) Rechen- & Statistikprogramm ist diese Angabe erforderlich.


In Geogebra hingegen ist die Angabe einer oberen Wachstumsgrenze nicht erforderlich - das Programm ermittelt aus t-Werten und y-Werten von sich aus eine obere Grenze.


Jetzt wüsste ich gerne, wie das Geogebra intern rechnet.


Vielen Dank für eine Erklärung!

LG, Martinius

        
Bezug
Regression: logist. Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Di 21.12.2010
Autor: abakus


> Hallo,
>  
> ich habe eine Frage zur Funktionsweise von Geogebra betr.
> das logistische Wachstum.
>  
> Ausgehend von:
>  
> [mm]y(t)=\frac{G}{1+k*exp(-rGt)}[/mm]
>  
>
> mit G = obere Schranke des Wachstums, A = y(0) Anfangswert
> der Population bei t = 0 und [mm]k=\frac{G-A}{A}[/mm]
>  
> kommt man auf die linearisierte Form:
>  
>
> [mm]z(t) = ln\left(\frac{1}{y}-\frac{1}{G} \right)=-r*G*t+ ln\left(\frac{1}{A}-\frac{1}{G} \right)[/mm]
>  
> Für die Regressionsgerade werden die t-Werte gegen die
> logarithmierten modifizierten y-Werte:
>
> [mm]z(t) = ln\left(\frac{1}{y}-\frac{1}{G} \right)[/mm]
>  
> aufgetragen. Dazu benötigt man aber schon den Zahlenwert
> für G - für die obere Wachstumsschranke! Auch in meinem
> (käuflich erworbenen) Rechen- & Statistikprogramm ist
> diese Angabe erforderlich.
>  
>
> In Geogebra hingegen ist die Angabe einer oberen
> Wachstumsgrenze nicht erforderlich - das Programm ermittelt
> aus t-Werten und y-Werten von sich aus eine obere Grenze.
>  
>
> Jetzt wüsste ich gerne, wie das Geogebra intern rechnet.

Hallo,
da solltest du die Entwickler fragen (Geogebra-Nutzerforum).
Gruß Abakus

>  
>
> Vielen Dank für eine Erklärung!
>  
> LG, Martinius


Bezug
                
Bezug
Regression: logist. Wachstum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:53 Di 21.12.2010
Autor: Martinius

Hallo Abakus,

hab vielen Dank für deine Antwort. Ich habe mich im user-Forum von Geogebra eingeloggt und dort meine Frage gestellt.

Ich stelle hier noch einmal die Frage auf unbeantwortet, für den Fall (mit wohl sehr geringer Wahrscheinlichkeit), dass jemand hier im Forum zufällig die Antwort wüsste.


LG, Martinius

Bezug
                        
Bezug
Regression: logist. Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Di 28.12.2010
Autor: Event_Horizon

Hallo!

Ich hab keine Ahnung, wie das intern tatsächlich geht.


Allerdings frage ich mich, warum es denn unbedingt  eine Regressionsgrade sein muß? Sicher, das gibt dir eine präzise Lösung, weil analytisch die beste Grade errechnet wird.

Aber es ist ja auch möglich, die Funktion so, wie sie ist,  direkt in die Daten einzupassen, beispielsweise mit der [mm]\chi^2[/mm]-Methode. Hier gibt es keine analytische Lösung, für die irgendwelche Formeln umgestellt werden müßten. Dabei werden die Parameter der Gleichung iterativ variiert, bis die Funktion die Daten möglichst perfekt beschreibt.

Sowas ist Gang und Gäbe, schließlich sind die wenigsten Funktionen so umzustellen, daß man anschließend eine lineare Regression durchführen kann.



Bezug
                                
Bezug
Regression: logist. Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Di 28.12.2010
Autor: Martinius

Hallo Event Horizon,

besten Dank für deine Antwort!

Dann mache ich mich einmal auf die Suche nach der $ [mm] \chi^2 [/mm] $-Methode.


LG & guten Rutsch ins Neue Jahr,

Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de