www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Regression mit 2 Unbekannten
Regression mit 2 Unbekannten < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regression mit 2 Unbekannten: Regression
Status: (Frage) beantwortet Status 
Datum: 12:59 Mo 19.12.2011
Autor: toto45

Aufgabe
Regression

Hallo,

ich habe verschiedene Messungen durchgeführt. Dabei sind zwei Unbekannte zu ermitteln. Ich habe 8 Messungen also 8 Gleichungen mit 2 Unbekannten. Nun möchte ich eine Regression dazu durchführen mit Excel um die zwei Unbekannten zu ermitteln.

Die Gleichung sieht wie folgt aus:
A=B*x+C*y
A,B,C sind bekannt
x, y die Unbekannten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie geht das und wie sieht die Therie zu solchen Problemen aus. Ich habe das mit der Regression nur mit einer Unbekannten im Web gefunden.
Wäre super wenn einer helfen kann

        
Bezug
Regression mit 2 Unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Di 20.12.2011
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenvh]

> ich habe verschiedene Messungen durchgeführt. Dabei sind
> zwei Unbekannte zu ermitteln. Ich habe 8 Messungen also 8
> Gleichungen mit 2 Unbekannten. Nun möchte ich eine
> Regression dazu durchführen mit Excel um die zwei
> Unbekannten zu ermitteln.
>  
> Die Gleichung sieht wie folgt aus:
>  A=B*x+C*y
>  A,B,C sind bekannt
>  x, y die Unbekannten.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wie geht das und wie sieht die Therie zu solchen Problemen
> aus. Ich habe das mit der Regression nur mit einer
> Unbekannten im Web gefunden.

Regression funktioniert immer über die Methode der kleinsten Quadrate. Wenn die i-te Messung die Messwerte [mm] $A_i$, $B_i$ [/mm] und [mm] $C_i$ [/mm] liefert, dann berechnest du

[mm] (A_i-B_i*x-C_i*y)^2 [/mm] ,

summierst dies über alle Messungen:

[mm] f(x,y) = \summe_i(A_i-B_i*x-C_i*y)^2 [/mm] .

und suchst diejenigen Werte x und y, für die $f(x,y)$ minimal wird. Das bedeutet, dass die partiellen Ableitungen von f nach x bzw y Null werden müssen, also

[mm] 0 = \bruch{\partial f}{\partial x} = \summe_i 2*(A_i-B_i*x-C_i*y)*(-B_i) [/mm]

und

[mm] 0 = \bruch{\partial f}{\partial y} = \summe_i 2*(A_i-B_i*x-C_i*y)*(-C_i) [/mm] .

Den Faktor 2 kann man vor die Summe ziehen und herauskürzen; wenn du die Klammern auf den rechten Seiten ausmultiplizierst und die Summen auseinanderziehst, ergeben sich die folgenden beiden Gleichungen:

[mm] 0 = -\left(\summe_i A_i B_i\right) +x \left(\summe_i B_i^2\right) +y \left(\summe_i B_i C_i\right) [/mm] ,

[mm] 0 = -\left(\summe_i A_i C_i\right) +x \left(\summe_i B_iC_i\right) +y \left(\summe_i C_i^2\right) [/mm] .

Das ist ein lineares Gleichungssystem für x und y, denn in den einzelnen Summen stehen nur deine Messwerte; die kannst du also direkt ausrechnen.

Um nachzuweisen, dass die Lösung dieses Gleichungssystems ei Minmum der Funktion $f(x,y)$ darstellt, kannst du noch nachrechnen, dass die Matrix der zweiten Ableitungen positiv definit ist.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de