Regularisierungsfehler < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:44 Mi 24.08.2005 | Autor: | anni0804 |
Habe immer noch Schwierigkeiten mit einem Beweis in meiner Seminarausarbeitung.
Vielleicht hat jemand Zeit und Lust mir einen Tip zu geben.
Da ich jetzt nicht alles aufschreiben wollte, habe ich die 2 Seiten mal mit drangehängt.
Es geht um den Beweis von Theorem 4.2.
Habe eine Frage zum Schluss des Beweises (den Anfang hab ich dank einem Tip jetzt schon selbst hinbekommen). Warum kann man die Funktion $f(x)$ durch $f(x)-P(x)$ ersetzen und wie kommen da jetzt die Formeln (2) und (3) ins Spiel ?
Wäre super, wenn mir jemand helfen könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Dateianhänge: Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
|
|
|
|
hallo Anja,
ich finde das schon ganz schön krass, was ihr da bewältigen müsst! (Kommt mir vor, wie ein Fall von selbstverliebetem Prof...)
Ich kenn mich mit dem Thema nicht aus, aber bevor Du leer ausgehst, folgende Hinweise:
Polynome vom Grad [mm] \le [/mm] m können in dem Orthonormalsystem der Gegenbauerpolynome bis m ohne Regularisierungsfehler dargestellt werden: sie sind eine Basis des Raums aller Polynome vom Grad [mm] \le [/mm] m (S.2 letzter Satz vor "Definition": dort steht's allgem. für eine Basis. Hier kannst Du die Ge-Bauern einsetzen).
Daher änderst Du den RE einer analytischen Funktion nicht, wenn Du ein Polynom abziehst, also [mm] RE(\lambda,m)(f) [/mm] = [mm] RE(\lambda,m)(f-P) [/mm] für alle P mit grad(P) [mm] \le [/mm] m. Du ersetzt deshalb beim Beweis 4.2 im letzten Schritt [mm] \max_{-1 \le x \le 1}|f(x)| [/mm] durch [mm] \max_{-1 \le x \le 1}|f(x)-P(x)| [/mm] und damit ist nach (2)
[mm]\max_{-1 \le x \le 1}|f(x)-P(x)| = \min_{P \in P_{m}}\max_{-1 \le x \le 1}|f(x)-P(x)| \le r_{0}^{m} [/mm].
Das müsste es eigentlich schon gewesen sein...
Hoffentlich hilft's Dir weiter, Grüße
Richard
|
|
|
|