www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe
Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe: Reihenwert berechnen
Status: (Frage) beantwortet Status 
Datum: 11:58 Mo 20.08.2007
Autor: miradan

Aufgabe
Bestimmen SIe, falls vorhanden, mit Hilfe der geometrischen Reihe den Reihenwert der folgenden Reihe:
[mm] \summe_{k=1}^{\infty}\bruch{(-1)^k +2}{4^k} [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo ihr lieben,
also irgendwie steh ich völlig auf dem Schlauch.
Bei dieser Aufgabe bin ich bisher so weit gekommen:

ich weiß, dass die Summe die Summe ihrer Teilsummen ist. Dafür habe ich diese Summe in gerade und ungerade k unterteilt und das Anfangsglied k=1 dazu addiert.

[mm] \summe_{k=1}^{\infty}\bruch{(-1)^{2k+1}+2}{4^{2k+1}}+\summe_{k=1}^{\infty}\bruch{(-1)^{2k}+2}{4^{2k}} +\bruch{1}{4} [/mm]

so und nun? ich weiß, dass die erste Summe immer eine 1 im Zähler hat und die zweite Summe immer eine 3, doch was bringt das? und was soll ich mit der geometrischen Reihe anfangen?
Da gibt es bestimmt eine ganz leichte Lösung, doch ich komme nicht drauf.

für eure Hilfe wäre ich unendlich dankbar.
grüße Mira

        
Bezug
Reihe: zerlegen
Status: (Antwort) fertig Status 
Datum: 12:01 Mo 20.08.2007
Autor: Roadrunner

Hallo Mira,

[willkommenmr] !!


Dein Verdacht mit einer einfacheren Lösung ist begründet ;-) .

Zerlege die Reihe einfach in zwei einzelne Reihen:

$ [mm] \summe_{k=1}^{\infty}\bruch{(-1)^k +2}{4^k} [/mm] \ = \ [mm] \summe_{k=1}^{\infty}\left[\bruch{(-1)^k}{4^k}+\bruch{2}{4^k}\right] [/mm]  \ = \ [mm] \summe_{k=1}^{\infty}\bruch{(-1)^k}{4^k}+2*\summe_{k=1}^{\infty} \bruch{1}{4^k} [/mm] \ = \ [mm] \summe_{k=1}^{\infty} \left(-\bruch{1}{4}\right)^k+2*\summe_{k=1}^{\infty} \left(\bruch{1}{4}\right)^k$ [/mm]


Und nun 2-mal die Formel für die geometrische Reihe anwenden ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Reihe: komme auf verschiedene Werte
Status: (Frage) beantwortet Status 
Datum: 12:59 Mo 20.08.2007
Autor: miradan

also wenn ich nun, wie du sagtest, q zweimal berechne, komme ich auf einen Reihenwert von [mm] s=\bruch{13}{15} [/mm] stimmt das dann?

Berechnung:
[mm] s=\bruch{a_1}{1-q} [/mm]

1.) q für [mm] \bruch{-1}{4}^k: [/mm]

[mm] q_1= [/mm] -0,25
[mm] q_2= [/mm] 0,0625

q= -0,25


2.) q für [mm] \bruch{1}{4}^k: [/mm]

[mm] q_1= [/mm] 0,25
[mm] q_2=0,0625 [/mm]

q= 0,25

Berechnung von s:

s= [mm] s_1+2*s_2 [/mm]

s= [mm] \bruch{1}{5}+2*\bruch{1}{3} [/mm]

[mm] s=\bruch{13}{15} [/mm]

Wenn ich meinen Ansatz aber weiter rechne, komme ich auf folgende Lösung:

für die Berechnung des ganzen Reihenwertes addiere ich doch die Reihenwerte der Einzelsummen? oder?


das wäre bei meinem Ansatz :

[mm] \bruch{1}{4}+ [/mm] 0,2Periode 6 + 0,2Periode 6

(die 0,2Periode 6 erhalte ich, wenn ich q=0,0625 aus den Teilsummen berechne.)

daraus folgt s= 0,78Periode 3

ist denn mein Ansatz so verkehrt? liege ich daneben? wenn ja, wo?
Sorry für die nicht ganz so übersichtliche Darstellung, doch ich kämpfe noch richtig mit der Erstellung der Formeln. Bin ja noch neu hier.
p.s. Danke für deine promte Antwort. :)

Bezug
                        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 20.08.2007
Autor: schachuzipus

Hallo miradan,


ich erhalte da als Reihenwert [mm] \frac{7}{15} [/mm]

Den Ansatz für die Berechnung des Wertes der geometr. Reihe hast du (fast) richtig,

das ist [mm] a_1\cdot{}\sum\limits_{k=0}^{\infty}q^k=\frac{a_1}{1-q} [/mm] für $|q|<1$


Bedenke aber, dass für den GW der geometrischen Reihe die Reihe bei [mm] \red{k=0} [/mm] losläuft, deine Reihe(n) aber bei [mm] \blue{k=1} [/mm]

Du musst also jeweils den ersten Summanden noch vom GW abziehen.


LG

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de