www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe
Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe: Konvergenz einer Reihe
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 05.03.2008
Autor: alexwie

Aufgabe
Bestimme [mm] \alpha [/mm] so dass die reihe [mm] \summe_{i=0}^{\infty}\bruch{i^{\alpha}}{e^{i-\bruch{\alpha}{3}}} [/mm] konvergiert.

Ich habe ein Problem bei dieser aufgabe. Ich habe schon versucht das mit dem Quotientenkriterium herauszufinden aber das funktioniert leider bei mir nicht. Wär nett wenn mir jmd helfen könnte.

        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 05.03.2008
Autor: abakus


> Bestimme [mm]\alpha[/mm] so dass die reihe
> [mm]\summe_{i=0}^{\infty}\bruch{i^{\alpha}}{e^{i-\bruch{\alpha}{3}}}[/mm]
> konvergiert.
>  Ich habe ein Problem bei dieser aufgabe. Ich habe schon
> versucht das mit dem Quotientenkriterium herauszufinden
> aber das funktioniert leider bei mir nicht. Wär nett wenn
> mir jmd helfen könnte.

Hallo,
ich weiß nicht, ob es hilft. Auf alle Fälle lässt sich jeder Summand etwas umschreiben.
Es gilt [mm] \bruch{i^{\alpha}}{e^{i-\bruch{\alpha}{3}}}=\bruch{i^{\alpha}}{e^{i}}*e^{\bruch{\alpha}{3}}. [/mm]
Dabei ist [mm] e^{\bruch{\alpha}{3}} [/mm] ein jeweils konstanter Faktor ohne Einfluss auf das Konvergenzverhalten.
Versuch jetzt mal das Quotientenkriterium und poste eventuell den dabei erhaltenen Term.
Viele Grüße
Abakus




Bezug
                
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Mi 05.03.2008
Autor: alexwie

Hallo Danke für die schnelle antwort.

Nun ja mit Quotienten kriterium komme ich auf [mm] (\bruch{i+1}{i})^{\alpha}*\bruch{1}{e} [/mm] mit dem vorfaktor halt noch. Das geht aber im grenzwert gegen 1/e also konvergiert die reihe doch für alle a( wenn das hier stimmt). nur kann die reihe wenn man sie sich anschaut für alpha größer 3 doch garnicht konvergieren.

Bezug
                        
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 05.03.2008
Autor: abakus


> Hallo Danke für die schnelle antwort.
>  
> Nun ja mit Quotienten kriterium komme ich auf
> [mm](\bruch{i+1}{i})^{\alpha}*\bruch{1}{e}[/mm] mit dem vorfaktor
> halt noch. Das geht aber im grenzwert gegen 1/e also
> konvergiert die reihe doch für alle a( wenn das hier
> stimmt). nur kann die reihe wenn man sie sich anschaut für
> alpha größer 3 doch garnicht konvergieren.

Hallo,
aus der Definition von e als Grenzwert wissen wir, dass [mm] (\bruch{i+1}{i})^{i} [/mm] von unten gegen e konvergiert. Ab einem bestimmten i ist (selbst bei beliebig großem [mm] \alpha) [/mm] immer [mm] (\bruch{i+1}{i})^{\alpha}< (\bruch{i+1}{i})^{i} Gruß
Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de