www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe
Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe: konvergenz
Status: (Frage) beantwortet Status 
Datum: 20:21 Mo 14.11.2011
Autor: Elektro21

Aufgabe
Hallo alle zusammen . Benötige wieder mal eure hilfe bei einer Aufgabe.

Untersuchen Sie die folgenden Reihen auf Konvergenz bzw. Divergenz sowie gegebenenfalls auf absolute Konvergenz.

[mm] \summe_{n=1}^{unendlich} \bruch{2n -1}{n^2 +2n +2} [/mm]


Danke im voraus

Ich habe die frage in keinem forum gestellt

        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mo 14.11.2011
Autor: Teufel

Hi!

Bei solchen Brüchen kannst du immer die kleineren Terme im Zähler und Nenner mal außer acht lassen und schauen, wie der Rest aussieht.

d.h. mach den Zähler mal zu 2n statt 2n-1 und den Nenner zu [mm] n^2 [/mm] statt [mm] n^2+2n+2. [/mm]

Dann steht da [mm] \frac{2n}{n^2}=\frac{2}{n}. [/mm] Damit sollte sich die Reihe wie
[mm] \summe_{i=1}^{n}\frac{2}{n} [/mm] verhalten, und von der weißt du was?

In welche Richtung solltest du dann ermitteln?

Bezug
                
Bezug
Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Mo 14.11.2011
Autor: Elektro21

Das geht gegen 0.
Aber in we weit hilft mir das weiter?

Bezug
                        
Bezug
Reihe: harmonische Reihe
Status: (Antwort) fertig Status 
Datum: 21:18 Mo 14.11.2011
Autor: Loddar

Hallo Elektro!


Was weißt Du denn über die harmonische Reihe [mm] $\summe_{n=1}^{\infty}\bruch{1}{n}$ [/mm] ?


Gruß
Loddar


Bezug
                
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Mo 14.11.2011
Autor: fencheltee


> Hi!
>  
> Bei solchen Brüchen kannst du immer die kleineren Terme im
> Zähler und Nenner mal außer acht lassen und schauen, wie
> der Rest aussieht.

hallo,
entweder leide ich noch unter fieberwahn, aber inwiefern hilft eine divergente majorante?

>  
> d.h. mach den Zähler mal zu 2n statt 2n-1 und den Nenner
> zu [mm]n^2[/mm] statt [mm]n^2+2n+2.[/mm]
>  
> Dann steht da [mm]\frac{2n}{n^2}=\frac{2}{n}.[/mm] Damit sollte sich
> die Reihe wie
> [mm]\summe_{i=1}^{n}\frac{2}{n}[/mm] verhalten, und von der weißt
> du was?
>  
> In welche Richtung solltest du dann ermitteln?

gruß tee

Bezug
                        
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Mo 14.11.2011
Autor: Elektro21

Wie muss ich dann vorgehen Tee.

Bezug
                        
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Mi 16.11.2011
Autor: Teufel

Hi!

Nein, es ging noch nicht darum eine Majorante oder Minorante zu finden, erst mal wollte ich feststellen, in welche Richtung ich überhaupt ermitteln muss. Und weil sich die vorgegebene Folge ca.  wie [mm] \bruch{1}{n} [/mm] verhält, muss man also Divergenz nachweisen [mm] (\summe_{i=1}^{\infty}\frac{1}{i}=\infty). [/mm]

Nun kann man sich also ransetzen, um eine divergente Minorante zu finden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de