www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe
Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe: Grenzwert einer Reihe
Status: (Frage) beantwortet Status 
Datum: 16:07 Di 07.02.2012
Autor: fe11x

Aufgabe
Berechne den Grenzwert folgender Reihe:
[mm] \summe_{i=1}^{\infty}\bruch{1}{n(n+1)} [/mm]

Weiters zeige man, wie man durch diese Reihe auf die Konvergenz von [mm] \summe_{i=1}^{\infty}\bruch{1}{n^2} [/mm] schließen kann

wie kann man hier den grenzwert berechnen? gibt es da irgendeine formel dafür?

den zweiten punkt versteh ich auch nicht ganz. eher kann man von der konvergenz der zweiten reihe auf die konvergenz der ersten schließen oder?

danke im voraus

grüße
felix

        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Di 07.02.2012
Autor: schachuzipus

Hallo Felix,


> Berechne den Grenzwert folgender Reihe:
>  [mm]\summe_{i=1}^{\infty}\bruch{1}{n(n+1)}[/mm]

Diese Reihe divergiert gegen [mm]\pm\infty[/mm], da du unendlich oft eine Konstante addierst.

Vermutlich meinst du hier und im weiteren die Reihe [mm]\sum\limits_{\red{n}=1}^{\infty}\frac{1}{n(n+1)}[/mm] (und dann auch [mm]\sum\limits_{\red{n}=1}^{\infty}\frac{1}{n^2}[/mm]) ...

Fazit: Schreibe sorgfältiger auf und nutze vor dem Absenden die Vorschaufunktion!

>  
> Weiters zeige man, wie man durch diese Reihe auf die
> Konvergenz von [mm]\summe_{i=1}^{\infty}\bruch{1}{n^2}[/mm]
> schließen kann
>  wie kann man hier den grenzwert berechnen? gibt es da
> irgendeine formel dafür?

Es ist [mm]\sum\limits_{n=1}^{\infty}a_n=\lim\limits_{k\to\infty}\sum\limits_{n=1}^ka_n[/mm]

Das nutze hier aus, mache dazu für dein [mm]a_n=\frac{1}{n(n+1)}[/mm] eine Partialbruchzerlegung, Ansatz: [mm]\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}[/mm]

Das gibt eine sog. Teleskopsumme, in der sich die meisten Glieder wegheben.

Stelle eine solche (k-te Partial-)Summe [mm]\sum\limits_{n=1}^ka_n[/mm] mal auf und lasse dann [mm]k\to\infty[/mm] gehen.

>  
> den zweiten punkt versteh ich auch nicht ganz. eher kann
> man von der konvergenz der zweiten reihe auf die konvergenz
> der ersten schließen oder?

Das stimmt und lässt sich leicht mit dem Majorantenkrit. zeigen.

Wie man allein aus dem Konvergenznachweis (und dem Wert) der ersten Reihe die Konvergenz der zweiten zeigen soll, sehe ich im Moment auch nicht ...

Ich lasse es daher mal auf "teilweise beantwortet"


>  
> danke im voraus
>  
> grüße
>  felix

LG

schachuzipus


Bezug
                
Bezug
Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Di 07.02.2012
Autor: fe11x

Aufgabe
...

okay,  meine erste frage ist, wieso diese gleichheit besteht. wie kommt man auf das?
[mm] \sum\limits_{n=1}^{\infty}a_n=\lim\limits_{k\to\infty}\sum\limits_{n=1}^ka_n [/mm]

das mit der partialbruchzerlegung ist mir klar. für A nimm ich 1 und für B -1
es kürzt sich alles weg bis auf das erste glied oder? denn wenn ich das k gegen unendlich gehen lasse, dann geht das letzte glied, das übrig bleiben würde, gegen 0. also kommt 1 raus. dürft passen oder?

Bezug
                        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 07.02.2012
Autor: schachuzipus

Hallo nochmal,


> ...
>  okay,  meine erste frage ist, wieso diese gleichheit
> besteht. wie kommt man auf das?
>  
> [mm]\sum\limits_{n=1}^{\infty}a_n=\lim\limits_{k\to\infty}\sum\limits_{n=1}^ka_n[/mm]

Das ist so definiert ...

>  
> das mit der partialbruchzerlegung ist mir klar. für A nimm
> ich 1 und für B -1
>  es kürzt sich alles weg bis auf das erste glied oder?

Und das letzte.

Wenn du das sauber aufschreibst (evtl. ganz "schön" mit zwei Summen und Indexverschiebung), siehst du, dass [mm]1-\frac{1}{k+1}[/mm] bleibt.

Das macht sich auf dem Übungszettel auch sehr gut ;-)

> denn wenn ich das k gegen unendlich gehen lasse, dann geht
> das letzte glied, das übrig bleiben würde, gegen 0. [ok]

Ahso, das ist es ja, das letzte Gied ... ;-)

> also
> kommt 1 raus. dürft passen oder? [ok]

Jo!

Gruß

schachuzipus


Bezug
                                
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Di 07.02.2012
Autor: fe11x

alles klar!

danke für deine hilfe!

Bezug
        
Bezug
Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 07.02.2012
Autor: Gonozal_IX

Hiho,

für den zweiten Teil der Aufgabe nutze:

$ [mm] \summe_{n=1}^{\infty}\bruch{1}{n(n+1)} \ge \summe_{n=1}^{\infty}\bruch{1}{(n+1)(n+1)} [/mm] = [mm] \summe_{n=1}^{\infty}\bruch{1}{(n+1)^2} [/mm] = [mm] \summe_{n=2}^{\infty}\bruch{1}{n^2}$ [/mm]

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de