www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe, Konvergenz o. Divergenz
Reihe, Konvergenz o. Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe, Konvergenz o. Divergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 07.05.2008
Autor: Xerxes2504

Aufgabe
Beweisen Sie die Konvergenz bzw. die Divergenz durch geeigneten
Vergleich:
a)   [mm] \summe_{k=0}^{\infty} \bruch{1}{10^k+1} [/mm]  


b)       [mm] \summe_{k=2}^{\infty} \bruch{1}{ln(k)} [/mm]  

Hallo zusammen,

hab da ein kleines Problem bei den Aufgaben zu den Reihen.

a) Habe ich gelöst indem ich die bekannte konvergente Reihe
[mm] \summe_{k=1}^{\infty} \bruch{1}{2k} [/mm] genommen habe und angegeben habe das  [mm] |a_n|<=b_n [/mm] mit [mm] a_n=\bruch{1}{10^n+1} [/mm] und
[mm] b_n=\bruch{1}{2n} [/mm] und daher folgt das [mm] b_n [/mm] konvergente Majorante von [mm] a_n [/mm] ist und daher
[mm] \summe_{k=0}^{\infty} \bruch{1}{10^k+1} [/mm] konvergiert

b) Habe ich analog gelöst indem ich die bekannte divergente Reihe [mm] \summe_{k=1}^{\infty} \bruch{1}{k} [/mm] genommen habe und angegeben habe das [mm] a_n>=b_n [/mm] ist mit [mm] a_n= \bruch{1}{ln(n)} [/mm]
und [mm] b_n= \bruch{1}{n} [/mm] und daher folgt das [mm] b_n [/mm] divergente Minorante von [mm] a_n [/mm] ist und daher
[mm] \summe_{k=2}^{\infty} \bruch{1}{ln(k)} [/mm] divergiert.

Meine Frage nun dazu , ist das in Ordnung? Kann ich 2 Reihen zueinander Abschätzen wobei die eine bei k=0 und die andere bei k=2 anfängt?(für mich wäre das logich da es im unendlichen ja kein Unterschied macht ob ich endlich viele Glieder dazu addiere oder abziehe)
Oder muss ich noch etwas beachten?

Vielen Danke,
Tommy

        
Bezug
Reihe, Konvergenz o. Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 07.05.2008
Autor: schachuzipus

Hallo Tommy,

dein Vorgehen ist an sich richtig und beruht auf dem Majoranten- oder Vergleichskriterium


> Beweisen Sie die Konvergenz bzw. die Divergenz durch
> geeigneten
>  Vergleich:
>  a)   [mm]\summe_{k=0}^{\infty} \bruch{1}{10^k+1}[/mm]  
>
>
> b)       [mm]\summe_{k=2}^{\infty} \bruch{1}{ln(k)}[/mm]  
> Hallo zusammen,
>  
> hab da ein kleines Problem bei den Aufgaben zu den Reihen.
>  
> a) Habe ich gelöst indem ich die bekannte konvergente
> Reihe
>  [mm]\summe_{k=1}^{\infty} \bruch{1}{2k}[/mm] [notok]

Das ist eine bekannte divergente Reihe, du hast sie weiter unten auch benutzt ;-)

Du kannst doch [mm] $\summe_{k=1}^{\infty} \bruch{1}{2k}$ [/mm] schreiben als [mm] $\frac{1}{2}\cdot{}\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm]

Und wenn [mm] $\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm] gegen [mm] $\infty$ [/mm] divergiert, so tut es [mm] $\frac{1}{2}\cdot{}\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm] auch




> genommen habe und
> angegeben habe das  [mm]|a_n|<=b_n[/mm] mit [mm]a_n=\bruch{1}{10^n+1}[/mm]

Vom Prinzip her richtig, finde eine konvergente Majorante, also eine größere Reihe, die konvergent ist, also einen endlichen Reihenwert hat, dann bleibt deiner armen kleineren Ausgangsreihe nichts anderes übrig als auch einen endlichen Wert zu haben, also zu konvergieren

Als Tipp werfe ich mal das Stichwort "geometrische Reihe" in den Raum.

Versuche also deine Reihe zu vergrößern und (naheliegend) gegen eine konvergente geometrische Reihe abzuschätzen

> und
>  [mm]b_n=\bruch{1}{2n}[/mm] und daher folgt das [mm]b_n[/mm] konvergente
> Majorante von [mm]a_n[/mm] ist und daher
> [mm]\summe_{k=0}^{\infty} \bruch{1}{10^k+1}[/mm] konvergiert
>  
> b) Habe ich analog gelöst indem ich die bekannte divergente
> Reihe [mm]\summe_{k=1}^{\infty} \bruch{1}{k}[/mm] [ok]

Genau!

> genommen habe und
> angegeben habe das [mm]a_n>=b_n[/mm] ist mit [mm]a_n= \bruch{1}{ln(n)}[/mm]
>  
> und [mm]b_n= \bruch{1}{n}[/mm] und daher folgt das [mm]b_n[/mm] divergente
> Minorante von [mm]a_n[/mm] ist und daher
> [mm]\summe_{k=2}^{\infty} \bruch{1}{ln(k)}[/mm] divergiert. [ok]
>  
> Meine Frage nun dazu , ist das in Ordnung?

(b) ja, (a) nein

> Kann ich 2
> Reihen zueinander Abschätzen wobei die eine bei k=0 und die
> andere bei k=2 anfängt?

Lasse einfach beide Reihen beim gleichen Startwert beginnen, du kannst immer endlich viele(!!) Glieder bei der Reihe wegnehmen oder hinzufügen ohne das Konvergenzverhalten zu ändern

Da eine endliche Summe immer endlich ist, ändert das Wegnehmen oder Hinzufügen von endlich vielen Summanden nix am Konvergenzverhalten (also an der Konvergenz bzw. Divergenz) der Reihe (wohl aber am konkreten Grenz- oder Reihenwert)

> (für mich wäre das logich da es im
> unendlichen ja kein Unterschied macht ob ich endlich viele
> Glieder dazu addiere oder abziehe)
>  Oder muss ich noch etwas beachten?
>  
> Vielen Danke,
>  Tommy


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de