Reihe konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:33 So 22.03.2009 | Autor: | fecit |
Aufgabe | Man untersuche die Konvergenz mittels Quotientenkriteriums!
[mm] 1+\bruch{2}{2!} [/mm] + [mm] \bruch{4}{3!} [/mm] + [mm] \bruch{8}{4!} [/mm] +... |
Das kann ich darstellen als --> [mm] \summe_{n=0}^{\infty}\bruch{2^{n}}{n!}
[/mm]
[mm] \limes_{n\rightarrow\infty}|\bruch{a_{n+1}}{a_{n}}| [/mm] //formel
[mm] \limes_{n\rightarrow\infty}|\bruch{\bruch{2^{n+1}}{(n+1)!}}{\bruch{2^{n}}{n!}}| [/mm] //einsetzen in die formel!
[mm] \limes_{n\rightarrow\infty}|\bruch{2^{n+1}}{(n+1)!}*\bruch{n!}{2^{n}}| [/mm] //Doppelbruch auflösen mit dem Kehrwert multipliziert
[mm] \limes_{n\rightarrow\infty}(\bruch{2^{n}*2}{(n+1)*n!}*\bruch{n!}{2^{n}}) [/mm] //Kürzen [mm] 2^{n} [/mm] und n!
// annahme (n+1)!=(n+1)*n! , [mm] 2^{n+1} [/mm] = [mm] 2^{n}*2;
[/mm]
[mm] \limes_{n\rightarrow\infty}\bruch{2}{n+1} [/mm] // und das strebt gegen 0
Mit 0 bekomme ich jedoch keine aussage und laut eines Computeralgebra Programms bekomme ich für den limes 2
Ist die Umformung Richitg (n+1)!=(n+1)*n! sonst wüsste ich nicht wo ich den Fehler eingebaut habe?
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo nochmal,
ich sehe gerade, dass du die Reihe falsch aufgestellt hast.
Es müsste $\sum\limits_{n=0}^{\infty}\frac{2^n}{\red{(n+1)!}$ lauten ...
LG
schachuzipus
|
|
|
|