www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe von tan aus sin und cos
Reihe von tan aus sin und cos < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe von tan aus sin und cos: Idee
Status: (Frage) beantwortet Status 
Datum: 11:23 So 03.11.2013
Autor: xxgenisxx

Aufgabe
Leiten sie unter Verwendung der Potenzreihenentwicklungen für sinus und cosinus die Potenzreihe der Tangensfunktion tan x = sinx/cosx bis zur siebten potenz von x her.

Hallo liebe Community,
ich habe mal wieder ein kleines Problem:
Ich will die Aufgabe lösen und mir fehlt jeder Ansatz. Ich habe mich auch geforscht und rausgefudnen dass eine Lösung mit Cauchyprodukt denkbar wäre. Leider hatten wir dieses in der Vorlesung noch nicht. Deshalb eine Frage:
-Gibt es einen direkteren Weg, als das Cauchyprodukt?
-Laut Wikipedia ist die Potenzreihe genau die Taylorentwickung um entwicklungspunkt x=0, stimmt das? Hatten wir in mathe auch nicht, aber ich kenne es aus der Physik. Würde die Potenreihe dann der entsprechen:
[mm]x+\bruch{1}{3}*x^3+\bruch{2}{15}*x^5...[/mm]

Danke schonmal im Vorraus!!

Ich habe die Frage sonst nirgendwo gestellt. Link zu Wiki: http://de.wikipedia.org/wiki/Tangens_und_Kotangens




        
Bezug
Reihe von tan aus sin und cos: Koeffizientenvergleich
Status: (Antwort) fertig Status 
Datum: 11:57 So 03.11.2013
Autor: Infinit

Hallo xxgenisxx,
mit einem Ansatz zu einem Koeffizientenvergleich kommst Du hier weiter, wenn die Reihenentwicklungen für den Sinus und den Cosinus gegeben sind:
Dazu schreibt man
[mm] f(x) = \bruch{\sin x}{\cos x} [/mm] um in eine Produktform und benutzt für f(x) den Potenzreihenansatz
[mm] f(x) = \sum_{n=0}^{\infty} a_n x^n [/mm]
Das führt also zur Darstellung
[mm] (1 - \bruch{x^2}{2!} + \bruch{x^4}{4!} - \bruch{x^6}{6!} + \bruch{x^8}{8!} + - ... ) \cdot (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + ...)= x - \bruch{x^3}{3!} + \bruch{x^5}{5!} - \bruch{x^7}{7!} + - ...) [/mm]
Und nun führst Du für jede Potenz einen Koeffzientenvergleich durch und kommst somit zu den Werten für die Tangens-Darstellung.
Viele Grüße,
Infinit

Bezug
                
Bezug
Reihe von tan aus sin und cos: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 So 03.11.2013
Autor: xxgenisxx

Danke, dein Hinweis im Verbund mit dem Cauchyprodukt hat mich auf den richtigen Weg gebracht. Mir war nur nicht klar dass das Cauchyprodukt der Koeffizientenvergleich ist, den wir eigentlich shcon öfters gemacht hatten.
Danke ;D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de