www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 So 27.08.2006
Autor: HundKatzeMaus

Aufgabe
[mm] \summe_{i=1}^{\infty} [/mm] -1 hoch k durch k²

Mit Hilfe des Qutientenkriteriums komme ich auf in Betragstrichen: -1 x k² durch (k+1)². Jetzt habe ich ein Problem beim nächsten Schritt:
A.) Ich löse K heraus und kann es dann kürzen. So komme ich auf -k als Ergebnis
ODER
B.) Ich überprüfe mit diese Zeile für welches k die konvergenz gilt.

Meine Frage ist, ob ich bei Reihen genau wie bei Folgen k herausziehen und dann wegkürzen kann. Bei Folgen haben wir diesen Vorgang ständig gemacht, aber ich bin mir unsicher, ob es auch bei Reihen so geht.
LG
HUNDKATZEMAUS

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 So 27.08.2006
Autor: Christian

Hallo!

> [mm]\summe_{i=1}^{\infty}[/mm] -1 hoch k durch k²
>  Mit Hilfe des Qutientenkriteriums komme ich auf in
> Betragstrichen: -1 x k² durch (k+1)². Jetzt habe ich ein
> Problem beim nächsten Schritt:
>  A.) Ich löse K heraus und kann es dann kürzen. So komme
> ich auf -k als Ergebnis
>  ODER
>  B.) Ich überprüfe mit diese Zeile für welches k die
> konvergenz gilt.

Erstmal: Konvergenz gibt es nur für [mm] $k\to\infty$, [/mm] nicht für ein bestimmtes $k$... dann wäre es zudem auch hilfreich, wenn Du Dich des Formeleditors bedienen würdest, das würde die Lesbarkeit Deines Artikels und die Verständlichkeit Deiner Gedanken u.U. durchaus steigern...

> Meine Frage ist, ob ich bei Reihen genau wie bei Folgen k
> herausziehen und dann wegkürzen kann. Bei Folgen haben wir
> diesen Vorgang ständig gemacht, aber ich bin mir unsicher,
> ob es auch bei Reihen so geht.
>  LG
>  HUNDKATZEMAUS

Entschuldige, aber: Was willst Du eigentlich? Wenn Du Konvergenz zeigen willst, dann geht das auch einfacher als über das Quotientenkriterium, nämlich mit dem Leibnitz-Kriterium: [mm] $\frac{(-1)^k}{k^2}$ [/mm] ist eine alternierende monotone  Nullfolge, daher ist die Reihe [mm] $\sum\limits_{k=1}^\infty \frac{(-1)^k}{k^2}$ [/mm] konvergent.

Grüße,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de