www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: konvergent/absolut konvergent
Status: (Frage) beantwortet Status 
Datum: 22:17 Mo 15.01.2007
Autor: KaiTracid

Aufgabe
Für welches [mm] \alpha \in [/mm] R ist dir Reihe [mm] (-1)^n [/mm] * [mm] (n/n^2+2)^\alpha [/mm] konvergenz bzw. absolut konvergent? Begründen sie ihre Antwort.

also [mm] a_{k} [/mm] ist absolut konvergent, wenn [mm] a_{k} |a_{k}| [/mm] konvergiert!
[mm] -1^n [/mm] ist ja divergent!
[mm] n/(n^2+2) [/mm] konvergiert gegen 0!

Jedoch wie bekomm ich dieses alpha raus?

Vielen Dank!

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mo 15.01.2007
Autor: schachuzipus

Hallo

kleiner Tipp, die harmonische Reihe ist eine gute "Vergleichsreihe", um ein "kritisches" [mm] \alpha [/mm] zu finden.
Dann habt iht ja bestimmt noch andere konvergente und divergente Reihen in der VL gehabt, die sich für einen Vergleich heranziehen lassen
(zB [mm] \summe\bruch{1}{q^k}) [/mm]


Gruß


schachuzipus

Bezug
                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Mo 15.01.2007
Autor: KaiTracid

Also ich habe mir mal folgendes überlegt:

der 2. Teil der Reihe konvergiert ja gegen 0!
Wenn jetzt mein alpha größer 1 ist, dann bedeutet dies ja, dass der Grenzwert ja "nur schneller erreicht" wird.

Aber ich glaub des stimmt nicht so ganz?!oder?!

die harmoniche Reihe ist ja divergent, nur die alternierende harmonische reihe ist konvergent.

komm  grad nicht weiter :(

Bezug
                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mo 15.01.2007
Autor: schachuzipus

Hallo

ja, dass die Summe der Reihenglieder eine Nullfolge bilden muss, ist NOTWENDIGES, aber kein hinreichendes Kriterium, wie die harmonische
Reihe ja zeigt.
Also ist eine Reihe, deren Partialsummen eine Nullfolge bilden, noch lange nicht kgt, aber eine Reihe, deren Partialsummen KEINE Nullfolge bilden, ist divergent

Ich mach mal ein Bsp [mm] \alpha [/mm]

Nehmen wir mal an, [mm] \alpha=1 [/mm]

Dann hast du [mm] \summe_n(-1)^n\left(\bruch{n}{n^2+2}\right)^1 =\summe_n(-1)^n\left(\bruch{1}{n+\bruch{2}{n}\right) [/mm]

Die hat doch schon eine Ähnlichkeit mit der harmonischen Reihe.
(Die alternierende harmonische Reihe konvergiert (Nach Leibniz),
die "normale" harmonische divergiert")
also ist zB [mm] \summe_n(-1)^n\left(\bruch{n}{n^2+2}}\right)^\alpha [/mm] für [mm] \alpha=1 [/mm] kovergent, aber nicht absolut konvergent.

Untersuche dann die Fälle [mm] \alpha>1 [/mm] und [mm] \alpha>1 [/mm]

Gruß

schachuzipus

Bezug
                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Mo 15.01.2007
Autor: KaiTracid

Also für alpha > 1 dachte ich mir jetzt folgendes:

[mm] \summe_{i=1} (-1)^n [/mm] * [mm] (n/n^2+2)^\infty [/mm]
---> 1/(n+n/2) geht gegen 0, ist konvergent

wäre das richtig?

und für alpha < 1 dachte ich mir, ich nehm einfach mal 0.5 d.h. ich kann
[mm] (-1)^n \wurzel]{1/(n^2+2)} [/mm] schreiben!

Aber wirklich bringt mich des nicht weiter gerade! kannst du mir nochmal helfen? Danke!

Bezug
                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mo 15.01.2007
Autor: schachuzipus


> Also für alpha > 1 dachte ich mir jetzt folgendes:
>  
> [mm]\summe_{i=1} (-1)^n[/mm] * [mm](n/n^2+2)^\infty[/mm]
>  ---> 1/(n+n/2) geht gegen 0, ist konvergent

>  
> wäre das richtig? Nein, siehe meinen post von oben. Für die Konvergenz einer Reihe reicht die Kovergenz der Folge der Partialsummen nicht
>  
> und für alpha < 1 dachte ich mir, ich nehm einfach mal 0.5
> d.h. ich kann
> [mm](-1)^n \wurzel]{1/(n^2+2)}[/mm] schreiben! ??
>  
> Aber wirklich bringt mich des nicht weiter gerade! kannst
> du mir nochmal helfen? Danke!


schau dir mal [mm] \bruch{n}{n^2+2} [/mm] an. Was lässt sich darüber sagen (wie kann man das abschätzen?) und welchen Bezug zu den Reihen [mm] \summe_k\bruch{1}{q^k} [/mm] kann man herstellen?


Gruß

schachuzipus

Bezug
                                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Mo 15.01.2007
Autor: KaiTracid

Also abschätzen würd ich mal sagen einfach durch 1/n! denn die + 2 machen minimal aus bei [mm] n->\infty [/mm] und dann kann man ja [mm] n/n^2 [/mm] kürzen.

Aber Bezug zu [mm] 1/q^k? [/mm] hmmm!
beide haben den Limes = 0!

Aber wie dann weitermachen?



Bezug
                                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Mo 15.01.2007
Autor: schachuzipus

Hallo

Ich hab etwas schlampig mit den Variablen rumgehampelt - sorry
was ich aber eigentlich meinte, ist: [mm] \bruch{n}{n^2+1} [/mm] hat doch ungefähr die Gestalt [mm] \bruch{1}{n} [/mm] und [mm] \summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm] ist konvergent für [mm] \alpha>1 [/mm] und divergent für [mm] \alpha<1. [/mm]

Du solltest versuchen, deine Reihe gegen eine Reihe der Form [mm] \summe_{n=1}^{\infty}\bruch{1}{kn^\alpha} [/mm] , [mm] k\in\IZ [/mm] abzuschätzen.
dann kannste [mm] \bruch{1}{k^\alpha} [/mm] rausziehen und hast wieder die Reihe [mm] \summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm]
Durch Multiplikation mit einer festen Zahl ändert sich ja nichts an der Konvergenz

Die harmonische Reihe bildet also quasi eine "Grenzreihe" unter dieser Art Reihen.

Das sollte bei den Überlegungen zur absoluten Konvergenz helfen,
Für [mm] \summe_{n=1}^{\infty}(-1)^n\bruch{1}{n^\alpha} [/mm] schau dir das Leibnizkriterium nochmal an

und nun eine gute N8

schachuzipus

Bezug
                                                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Di 16.01.2007
Autor: KaiTracid

Also das Kriterium hab ich mir jetzt nochmal angeschaut! aber komm damit grad nicht weiter!
kann mir jemand nochmal helfen?

Danke

Bezug
                                                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Di 16.01.2007
Autor: angela.h.b.


> Also das Kriterium hab ich mir jetzt nochmal angeschaut!
> aber komm damit grad nicht weiter!

Hallo,

mit dem bloßen Angucken ist es meist nicht getan...

Wie lautet das Leibnizkriterium?
Wie lautet Deine Reihe?
Was hat Deine Reihe mit dem Leibnizkriterium zu tun?
Was müßtest Du klären, um das Kriterium anwenden zu können?

Gruß v. Angela

Bezug
                                                                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Di 16.01.2007
Autor: KaiTracid

Hallo,

mit dem bloßen Angucken ist es meist nicht getan...
---> des meinte ich auch nicht mit anschauen! ich hab natürlich des nicht nur durchgelesen und angeschaut sondern auch versucht den Bezug her zu stellen!


Wie lautet das Leibnizkriterium?
--->Sei (an) eine monoton fallende, reelle Nullfolge, dann konvergiert die unendliche alternierende Reihe
Es genügt nicht, dass (an) nur eine Nullfolge ist, die Monotonie ist notwendig für dieses Kriterium.

Was hat Deine Reihe mit dem Leibnizkriterium zu tun?
--->meine Reihe ist auch eine alternierende Reihe und eine Nullfolge, desweiteren ist sie monoton fallend. d.h. die Kriterien wären erfüllt?!

Was müßtest Du klären, um das Kriterium anwenden zu können?
---> darauf komm ich gerade nicht!

Hoff kann mir jemand nochmal helfen!
Danke!

Bezug
                                                                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 16.01.2007
Autor: schachuzipus

Hallo

also nochmal:

du solltest zunächst [mm] \bruch{n}{n^2+2}=\bruch{1}{n+\bruch{2}{n}} [/mm] und zwar so:

[mm] \bruch{1}{2n}\le\bruch{1}{n+\bruch\{2}{n}}\le{1}{n} [/mm]
Damit hast du eine Abschätzung nah oben und nach unten.

Zunächst betrachten wir absolute Konvergenz:

Für welche [mm] \alpha [/mm] ist denn [mm] \summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm]  kovergent  
und für welche [mm] \alpha [/mm] ist [mm] \summe_{i=1}^{n}\bruch{1}{(2n)^\alpha}=\bruch{1}{2^\alpha}\summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm]

divergent?

Dann hättest du nach dem Vergleichskriterium konvergente Majoranten und divergente Minoranten zu deiner Reihe gefunden.
Bedenke noch, dass absolut kovergente Reihen auch konvergent sind.
Dann fallen einige Fälle für die Untersuchung von [mm] \summe_{n=1}^{\infty}(-1)^n\bruch{1}{n^\alpha} [/mm] bzw [mm] \summe_{i=1}^{\infty}(-1)^n\bruch{1}{(2n)^\alpha} [/mm] weg

Gruß


schachuzipus

Bezug
                                                                                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 16.01.2007
Autor: KaiTracid

die reihe $ [mm] \summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm] $ ist konvergent für [mm] \alpha [/mm] > 1

$ [mm] \summe_{i=1}^{n}\bruch{1}{(2n)^\alpha}=\bruch{1}{2^\alpha}\summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm] $
ist divergent für [mm] \alpha<1. [/mm]

Würd ich jetzt so sagen. Weis nicht ob des stimmt?!

also wenn sie konvergent ist müsste ja nach dem Majorantenkriterium gelten, dass an [mm] \le [/mm] bn ist, bn konvergent---> an absolut konvergent.
aber nach der Abschätzung meiner Folge ist ja bn [mm] \le [/mm] an! also 1/2n [mm] \le [/mm]
[mm] \bruch{n}{n^2+2} [/mm]


$ [mm] \bruch{1}{2n}\le\bruch{1}{n+\bruch\{2}{n}}\le{1}{n} [/mm] $
---> wie kommt man auf dieses hier?



Bezug
                                                                                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Di 16.01.2007
Autor: schachuzipus

Jo hi

Nun, wenn du in [mm] \bruch{1}{n+\bruch{2}{n}} [/mm] den Nenner verkleinerst, vergrößert sich der Bruch [mm] (\bruch{1}{3}<\bruch{1}{2}) [/mm]

Also [mm] \bruch{1}{n+\bruch{2}{n}}<\bruch{1}{n} [/mm] , denn [mm] \bruch{2}{n}>0 [/mm]

Wenn man hingegen den Nenner vergrößert, wird der Bruch kleiner
Also wegen [mm] n+\bruch{2}{n}<2n [/mm] gilt [mm] \bruch{1}{n+\bruch{2}{n}}>\bruch{1}{2n} [/mm]

Für die absolute Kovergenz hast du also mit [mm] \summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm] eine für [mm] \alpha>1 [/mm] konvergente Majorante gefunden.
In die andere Richtung ist [mm] \bruch{1}{2^\alpha}\summe_{n=1}^{\infty}\bruch{1}{n^\alpha} [/mm] für [mm] \alppha<1 [/mm] eine divergente Minorante zu deiner Reihe
Gruß

schachuzipus


Bezug
                                                                                                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Di 16.01.2007
Autor: KaiTracid

ok, aber ich sollte ja ein  alpha finden, für das meine Folge konvergent ist und ein alpha für dass sie absolut konvergent ist!

[mm] \bruch{1}{n+\bruch{2}{n}} [/mm]
dies war ja meine Folge! heist dass also dass diese Folge für alpha > 1 konvergent ist?


Bezug
                                                                                                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 16.01.2007
Autor: schachuzipus

Hi

ja und zwar sogar absolut!

Gruß

schachuzipus

Bezug
                                                                                                                                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Di 16.01.2007
Autor: KaiTracid

ok vielen vielen dank!

aber ich sollte ja auch noch ein alpha angeben für dass diese Reihe nur konvergent ist?!
oder kann ich einfach sagen, da ja jede Reihe, die absolut konvergent ist, auch konvergent ist, hier auch zu trifft? Oder brauch ich ein anderes alpha dafür?

Bezug
                                                                                                                                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Di 16.01.2007
Autor: schachuzipus

Hallo

aufmerksamer lesen

steht alles oben

Für [mm] \alpha>1 [/mm] ist die Reihe absolut konvergent, mithin auch konvergent
Für [mm] \alpha=1 [/mm] hast du die harmonische bzw die alternierende harmonische
Reihe als Vergleichsreihe. Die alternierende konvergiert nach Leibnitz, die "normale" nicht, also für [mm] \alpha=1 [/mm] Kovergenz, aber keine absolute Konvergenz

und für [mm] \alpha<1...? [/mm]


Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de