www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Reihen und Konvergenz
Reihen und Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen und Konvergenz : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 14.11.2004
Autor: nieselfriem

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Ich habe folgendes Problem ich habe folgende Aufgabe:  [mm] \summe_{i=3}^{ \infty} [/mm]  1/3^(i-1)

Wie gehe ich nun grundsätzlich vor um diese Folge zu untersuchen ob sie einen Grenzwert hat und ob sie konvergent oder divergent ist.

Danke!

        
Bezug
Reihen und Konvergenz : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 So 14.11.2004
Autor: baddi

Hallo ich glaube dieses Reihe wächst über alle Grenzen.
(1/3)*(1/3) + (1/3)*(1/3)*(1/3)  + (1/3)*(1/3)*(1/3)*(1/3) ....
Aber sicher bin ich mir da nicht.
Die zugrunde liegende Reihe konvergiert jedenfalls gegen 0,
das ist dir sicher auch klar.
Ich überlege ob Sie irgendwie eine Version der harmonischen Reihe sein könnte?
Diese konvergiert nämlich auch nicht.
Man kann anscheinend immer Stränge einer gleichen größe zusammen fassen. So das man sagen kann, die Strenge sind unendlich also wächst Sie unendlich....
Aber ich wüsste jetzt nicht wie man die Strenge angeben könnte oder ob es überhaupt stimmt was ich sage.
Einleuchtend ist das immer etwsa hinzugefügt wird... was aber noch nicht heist das es nicht konvergiert.... denn läuft man immer 10% der Reststrecke zum Ziel hinzu kommt man nie an.
Das wäre eigentlch wieder ein Argument dafür dass Sie konvergiert.
Hmmmm....
Tja sorry... weis es auch nicht.

Bezug
        
Bezug
Reihen und Konvergenz : Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 14.11.2004
Autor: zwerg

Moin nieselfriem!
Denke nicht das das ein Fall wie die  harmonische Reihe ist, denn meiner Meinung nach ist deine Summe konvergent.
Nach dem Quotientenkriterium
Eine Reihe komplexer Zahlen mit [mm] a_{n} \not= [/mm] 0 für fast alle n konvergiert absolut,wenn:
[mm] |\bruch{a_{n+1}}{a_{n}} [/mm] | [mm] \ge [/mm] q<1
dabei muß q bestimmbar sein
für q=1 versagt das Quotientenkriterium keine Aussage ohne weitere Prüfung
für deinen Fall ergibt das
[mm] |\bruch{a_{n+1}}{a_{n}} |=|\bruch{1}{3^{i}} 3^{i-1} [/mm] |=
=| [mm] \bruch{1}{3 3^{i-1}} |=|\bruch{1}{3} [/mm] | [mm] =\bruch{1}{3} [/mm] =q<1
also die Reihe existiert
Quotientenkriterium immer gut anwendbar, wenn du Potenzen oder Fakultäten in deiner Reihe hast
besorg dir "das gelbe Rechenbuch" von Peter Furlan Band 1-3 für rund 113 Euro je Band
MfG zwerg  

Bezug
                
Bezug
Reihen und Konvergenz : Schreibfehler + Tafelwerk
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Mo 15.11.2004
Autor: mathemaduenn

Hallo Zwerg,
>  Eine Reihe komplexer Zahlen mit [mm]a_{n} \not=[/mm] 0 für fast
> alle n konvergiert absolut,wenn:
>  [mm]|\bruch{a_{n+1}}{a_{n}}[/mm] | [mm]\ge[/mm] q<1

Hier sollte wohl
[mm]|\bruch{a_{n+1}}{a_{n}}[/mm] | [mm]\le[/mm] q<1
stehen.

>  besorg dir "das gelbe Rechenbuch" von Peter Furlan Band
> 1-3 für rund 113 Euro je Band

Boah ist das teuer. Vielleicht tut's auch ein Tafelwerk.
gruß
mathemaduenn

Bezug
                        
Bezug
Reihen und Konvergenz : da hat er recht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Mo 15.11.2004
Autor: zwerg

uhhhh man da hat der mathemaduenn recht tätsch mo sagn
nen doppelten für alle die das gelesen haben
prost denne

MfG zwerg

Bezug
                
Bezug
Reihen und Konvergenz : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mo 15.11.2004
Autor: Tintenfisch

HI!
HAbe auch ein Problem, das QAuotientenkriterium zu verstehen. WIe kommt man von  [mm] \bruch{1}{3 ^{i} } [/mm] *  [mm] 3^{i-1} [/mm]   auf   [mm] \bruch{1}{33^{i-1}} [/mm] ??? und dann auf ein drittel?

Bezug
                        
Bezug
Reihen und Konvergenz : Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Mo 15.11.2004
Autor: mathemaduenn

Hallo Tintenfisch,> HI!

> WIe kommt man von  [mm]\bruch{1}{3 ^{i} }[/mm] *  [mm]3^{i-1}[/mm]
>   auf   [mm]\bruch{1}{33^{i-1}}[/mm] ??? und dann auf ein drittel?

Gut das Du so aufmerksam mit gelesen hast.
Der Zwischenschritt müßte heißen.
[mm]\bruch{1}{3 ^{i} } * 3^{i-1} =\bruch{3^{i-1}}{33^{i-1}}[/mm]
Alles klar?
gruß
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de