www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Reihendarstellung des coth
Reihendarstellung des coth < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihendarstellung des coth: Idee
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 10.01.2014
Autor: Stephan123

Aufgabe
Beweisen Sie [mm] \bruch{e^{\pi x} + e^{-\pi x}}{e^{\pi x} - e^{-\pi x}} [/mm] = 1 + [mm] 2\summe_{n=1}^{\infty}e^{-2n\pi x} [/mm] = [mm] \summe_{n=-\infty}^{\infty} e^{-2\pi |n|x} [/mm] (x>0), und folgern Sie [mm] coth(\pi [/mm] x) = [mm] \summe_{n=-\infty}^{\infty} \bruch{x}{\pi (x^{2}+n^{2})} [/mm] (x [mm] \not= [/mm] 0), indem Sie die Poissonsche Summenformel auf f(t) = [mm] e^{-2\pi x|t|} [/mm] (x > 0 fest) anwenden.


Hallo,

den zweiten Teil der Aufgabe habe ich erledigt, nur fehlt der erste Teil, das heißt die erste Gleichung (die zweite ist klar). Leider habe ich da überhaupt keine Idee, für einen Hinweis wäre ich dankbar.

        
Bezug
Reihendarstellung des coth: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Fr 10.01.2014
Autor: MathePower

Hallo Stefan123,

> Beweisen Sie [mm]\bruch{e^{\pi x} + e^{-\pi x}}{e^{\pi x} - e^{-\pi x}}[/mm]
> = 1 + [mm]2\summe_{n=1}^{\infty}e^{-2n\pi x}[/mm] =
> [mm]\summe_{n=-\infty}^{\infty} e^{-2\pi |n|x}[/mm] (x>0), und
> folgern Sie [mm]coth(\pi[/mm] x) = [mm]\summe_{n=-\infty}^{\infty} \bruch{x}{\pi (x^{2}+n^{2})}[/mm]
> (x [mm]\not=[/mm] 0), indem Sie die Poissonsche Summenformel auf
> f(t) = [mm]e^{-2\pi x|t|}[/mm] (x > 0 fest) anwenden.
>  
> Hallo,
>  
> den zweiten Teil der Aufgabe habe ich erledigt, nur fehlt
> der erste Teil, das heißt die erste Gleichung (die zweite
> ist klar). Leider habe ich da überhaupt keine Idee, für
> einen Hinweis wäre ich dankbar.


Erweitere den Bruch so, daß da steht:

[mm]\bruch{1+e^{-2\pi x}}{1-e^{-2\pi x}}=\summe_{n=0}^{\infty}{c_{n}*e^{-2\pi*x*n}}[/mm]

Definiere weiter: [mm]z=e^{-2\pi*x}[/mm]

Dann steht da:

[mm]\bruch{1+z}{1-z}=\summe_{n=0}^{\infty}{c_{n}*z^n}[/mm]

bzw.

[mm]1+z=\left(1-z\right)*\summe_{n=0}^{\infty}{c_{n}}[/mm]

Multipliziere dies aus und durch Koeffizientenvergleich
erhältst Du die Koeffizienten [mm]c_{n}[/mm]


Gruss
MathePower


Bezug
                
Bezug
Reihendarstellung des coth: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Sa 11.01.2014
Autor: Stephan123

Hallo,

danke für die Antwort. Ich habe es nun etwas anders gemacht und den Ausdruck [mm] \summe_{n=1}^{\infty}e^{-2n\pi x} [/mm] = [mm] \summe_{n=0}^{\infty}(e^{-2\pi x})^{n} [/mm] - 1 direkt über die geometrische Reihe ausgerechnet. Nach ein paar Umformungsschritten kommt man dann auf das gewünschte :) .

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de