www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Reihenentwicklung
Reihenentwicklung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 15.11.2014
Autor: Rzeta

Aufgabe
Leiten Sie ähnlich wie im Skript eine Reihenentwicklung für [mm] \bruch{1}{\wurzel{1+x}} [/mm] her.

Hallo,

was versteht man bei der Aufgabe oben unter "herleiten". Im Skript steht die für die Binomialreihe:

[mm] B_c(z)=\summe_{k=0}^{n}\vektor{c \\ k}z^k=(1+z)^k; z\in\IC, /\IN_0 [/mm] für |z|<1

Die kann ich doch jetzt einfach 1:1 als Reihendarstellung Für [mm] \bruch{1}{\wurzel{1+x}} [/mm] übernehmen oder nicht?

[mm] (1+x)^{-\bruch{1}{2}}=\summe_{k=0}^{n}\vektor{-\bruch{1}{2} \\ n}x^k [/mm]

Ich habe auch schon rechnerisch die ersten 5 Terme der Taylorentwicklung von [mm] \bruch{1}{\wurzel{1+x}} [/mm] mit der Formel [mm] f(x)=\summe_{k=0}^{n}\bruch{1}{n!}f^{(k)}(x-x_0)^n [/mm] berechnet und dann mit der Summe [mm] \summe_{k=0}^{n}\vektor{-\bruch{1}{2} \\ n}x^k [/mm] verglichen aber ich bin mir wirklich nicht sicher ob das als "zeigen" zählt.

Über einen Ansatz/Tipp würde ich mich sehr freuen.

Danke

Rzeta

        
Bezug
Reihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 15.11.2014
Autor: fred97


> Leiten Sie ähnlich wie im Skript eine Reihenentwicklung
> für [mm]\bruch{1}{\wurzel{1+x}}[/mm] her.
>  Hallo,
>  
> was versteht man bei der Aufgabe oben unter "herleiten". Im
> Skript steht die für die Binomialreihe:
>  
> [mm]B_c(z)=\summe_{k=0}^{n}\vektor{c \\ k}z^k=(1+z)^k; z\in\IC, /\IN_0[/mm]
> für |z|<1
>  
> Die kann ich doch jetzt einfach 1:1 als Reihendarstellung
> Für [mm]\bruch{1}{\wurzel{1+x}}[/mm] übernehmen oder nicht?

Da kann ich nur zustimmen. Wenn Ihr die Binomialreihe hattet, so dürft Ihr sie auch verwenden.

FRED

>  
> [mm](1+x)^{-\bruch{1}{2}}=\summe_{k=0}^{n}\vektor{-\bruch{1}{2} \\ n}x^k[/mm]
>  
> Ich habe auch schon rechnerisch die ersten 5 Terme der
> Taylorentwicklung von [mm]\bruch{1}{\wurzel{1+x}}[/mm] mit der
> Formel [mm]f(x)=\summe_{k=0}^{n}\bruch{1}{n!}f^{(k)}(x-x_0)^n[/mm]
> berechnet und dann mit der Summe
> [mm]\summe_{k=0}^{n}\vektor{-\bruch{1}{2} \\ n}x^k[/mm] verglichen
> aber ich bin mir wirklich nicht sicher ob das als "zeigen"
> zählt.
>  
> Über einen Ansatz/Tipp würde ich mich sehr freuen.
>  
> Danke
>  
> Rzeta


Bezug
                
Bezug
Reihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Sa 15.11.2014
Autor: Rzeta

Dankeschön!

Gruß

Rzeta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de