www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Reihenentwicklung
Reihenentwicklung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenentwicklung: Reihenentwicklung der Wurzel
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 28.11.2013
Autor: Reno01

Aufgabe
Berechnung des Ausdruckes:
Wurzel [ [mm] (1+tan^2(delta)) [/mm] / [mm] (1+tan^2(lamda)) [/mm] ] mit Hilfe einer Reihenetwicklung.

Das Ergebnis lautet: (1 + [mm] (tan^2(delta))/2 [/mm] - [mm] (tan^2(lamda))/2 [/mm] )


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich verstehe einfach nicht, wie man aus dem Wurzelausdruck auf das Ergebnis kommt. Wisst ihr wie der Zwischenschritt aussieht?

In der Aufgabe ist noch der Hinweis gegeben, dass die 4.Potenz von tan(delta) und tan(lamda) vernachlässigt werden kann. Wieso das?

Ich wäre für eure Hilfe sehr dankbar!

        
Bezug
Reihenentwicklung: Abkürzungen einführen !
Status: (Antwort) fertig Status 
Datum: 19:41 Do 28.11.2013
Autor: Al-Chwarizmi

Guten Abend Reno01,

                     [willkommenmr]

> Berechnung des Ausdruckes:
> Wurzel [ [mm](1+tan^2(delta))[/mm] / [mm](1+tan^2(lamda))[/mm] ] mit Hilfe
> einer Reihenetwicklung.
>  
> Das Ergebnis lautet: (1 + [mm](tan^2(delta))/2[/mm] -
> [mm](tan^2(lamda))/2[/mm] )

>  Ich verstehe einfach nicht, wie man aus dem Wurzelausdruck
> auf das Ergebnis kommt. Wisst ihr wie der Zwischenschritt
> aussieht?

Das angegebene Ergebnis zeigt, dass nicht etwa eine
Reihe in den Variablen [mm] \delta [/mm] und [mm] \lambda [/mm] gefragt ist, sondern nur
eine, in der die Tangensfunktion immer noch auftreten darf.
Darum würde ich vorschlagen, gleich von Anfang
an die Abkürzungen

     $\ u:=\ [mm] (tan(\delta))^2$ [/mm]  und   $\ v:=\ [mm] (tan(\lambda))^2$ [/mm]

einzuführen. Dann haben wir es nur noch mit dem
Ausdruck

      $\ W\ =\ [mm] \sqrt{\frac{1+u}{1+v}}$ [/mm]

zu tun. Auf diesen deutlich einfacheren Term kannst du
nun wohl Techniken anwenden, die dir schon aus früheren
Beispielen bekannt sein dürften !

LG ,   Al-Chwarizmi


> In der Aufgabe ist noch der Hinweis gegeben, dass die
> 4.Potenz von tan(delta) und tan(lamda) vernachlässigt
> werden kann. Wieso das?

Für die eigentliche Reihenentwicklung sind natürlich
zunächst alle (unendlich vielen) Reihenglieder wesentlich.
Die Entwicklung soll aber zum Zweck erstellt werden,
anschließend eben genau alle Glieder mit "genügend
hohen" Potenzen der Tangenswerte im Sinne einer
Approximation wegzulassen. Wenn nun gesagt wird,
dass man schon auf die vierten (und alle höheren)
Potenzen der Tangenswerte verzichten dürfe, so ist
dies natürlich für den Aufwand, eine Näherungsformel
aufzustellen, ein ganz nettes Geschenk !

:-)



Bezug
                
Bezug
Reihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Fr 29.11.2013
Autor: Reno01

vielen dank Al-Chwarizmi, der gedanke hat mir gefehlt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de