www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihenkonvergenz
Reihenkonvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Do 27.11.2008
Autor: Espada

Aufgabe
Zeigen Sie:

[mm] \limes_{n\rightarrow\infty}\wurzel[n]{n!}=\infty [/mm]

Hi Leute

auf unserem Aktuellen Anablatt haben wir wieder mal eine Aufgabe für die ich keinen Ansatz finde. Ich hoffe ihr könnt mir da weiterhelfen.

In der Vorlesenung haben wir bereits die Konvergenz für [mm] \wurzel[n]{n} [/mm] gezeigt. Wir haben das mit der Bernoulli Ungleichung gemacht.
Leider bringt es keinen Erfolg in der Bernoulliungleichung.

wir haben die Wurzel zerlegt in:

[mm] \wurzel[n]{n}*\wurzel[n]{n-1}*\wurzel[n]{n-2}*...*\wurzel[n]{1} [/mm]

alle meine Produktglieder konvergieren gegen 1 für [mm] n\rightarrow\infty [/mm] ...

und dummerweise ist 1*1*1*1*1*...*1 immernoch 1...

mfg
Espada

PS.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Do 27.11.2008
Autor: reverend

Ich empfehle Dir die Suche nach einer divergenten Minorante. Am besten hat sie möglichst viel Vergleichbares, also entweder die Fakultät oder aber die n-te Wurzel.

Dazu ein Tipp:
[mm] n\ge2 \Rightarrow n^n>n! [/mm]
...aber wie verhält sich [mm] n^{an} [/mm] zu n! ?

Bezug
                
Bezug
Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Do 27.11.2008
Autor: Espada

Hi reverend, danke für deine Antwort.

Leider hatten wir das Minorantenkriterium noch nicht... (habe das gesammte Script durchgearbeitet)

Auch verstehe ich deinen Ansatz nicht.
Wenn ich eine Folge betrachte die ebenfalls divergiert, dann muss sie, damit ich sie vergleichen kann doch kleiner sein als meine Folge?

[mm] n^{n} [/mm] ist aber (wie du ja selber sagst) größer als n! ...

wie hilft mir das weiter?

mit freundlichen Grüßen
Espada

Bezug
                        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Do 27.11.2008
Autor: reverend

Deswegen ja der Hinweis auf [mm] n^{an}. [/mm] Versuch doch mal [mm] a=\bruch{1}{2} [/mm]

Bezug
                                
Bezug
Reihenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Do 27.11.2008
Autor: Espada

Danke reverend :)

Wir konnte die aufgabe jetzt Lösen :)

mfg
Espada

Bezug
        
Bezug
Reihenkonvergenz: Alternative
Status: (Antwort) fertig Status 
Datum: 11:34 Do 27.11.2008
Autor: Roadrunner

Hallo Espada,

[willkommenmr] !!


Alternativ kannst Du zur Abschätzung der Fakultät für große $n_$ die []Stirling-Formel verwenden.


Gruß vom
Roadrunner


Bezug
                
Bezug
Reihenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Do 27.11.2008
Autor: Espada

Hi Roadrunner,

danke für dein Willkommen :)

an die Stirling-Formel habe ich auch schon gedacht. Doch "kennen" wir diese leider noch nicht, von daher müsste ich sie beweisen. Im Internet habe ich nach einen Beweis gesucht, aber bis auf ein paar Beweisideen konnte ich leider nichts finden...

mfg
Espada

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de