www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihenwert durch Integration
Reihenwert durch Integration < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenwert durch Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Do 14.02.2013
Autor: acid

Aufgabe
Ermitteln Sie den Konvergenzradius R der Potenzreihe [mm] \summe_{k=2}^{\infty} \frac{(-3)^k}{k}(x+1)^k [/mm]
und bestimmen Sie für jedes x [mm] \in \IR [/mm] mit x + 1 [mm] \in [/mm] (−R, R) den Reihenwert.


Hallo!

Ich habe eine Frage zum zweiten Aufgabenteil. Im Lösungsvorschlag steht, dass man die Reihe zur Funktion p(x) machen kann. Dann ist ja:

p'(x) = [mm] \summe_{k=2}^{\infty} (-3)^k(x+1)^{k-1} [/mm]
= (-3) [mm] \summe_{k=1}^{\infty} (-3)^k(x+1)^{k} [/mm]

gemoetrische Reihe für |3x+3| < 1:

p'(x) = -3 [mm] \left( \frac{1}{1+(3x+3)} \right) [/mm] = 3 [mm] \left( \frac{3x+3}{3x+4} \right) [/mm] = 3 [mm] \left( 1 - \frac{1}{3x+4} \right) [/mm]

Ich hätte jetzt so weiter gemacht: Das ganze integrieren, um nochmal auf p(x) zu kommen und dann c berechnen.

Also:
p(x) = 3 [mm] \integral{1 dx} [/mm] - [mm] \integral{\frac{3}{3x+4} dx} [/mm] = 3x - [mm] \ln(3x+4) [/mm] + c

Im Lösungsvorschlag steht aber:
p(x) = 3 [mm] \integral_{-1}^{x}{1 dt} [/mm] - [mm] \integral_{-1}^{x}{\frac{3}{3t+4} dt} [/mm]

Wie man dann weiter rechnet, ist mir klar - und dass das Ergebnis richtig ist, auch. Ich verstehe aber einfach nicht, warum man hier jetzt Grenzen in das Integral einsetzen muss. Und warum gerade -1 und x? Wegen der Entwicklung um [mm] x_0 [/mm] = -1? Geht es ohne Grenzen nur, wenn man eine Potenzreihe um [mm] x_0 [/mm] = 0 hat?

Ich hoffe, man versteht halbwegs, was ich meine.
Schon mal vielen Dank,
acid

        
Bezug
Reihenwert durch Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Do 14.02.2013
Autor: rainerS

Hallo acid!

> Ermitteln Sie den Konvergenzradius R der Potenzreihe
> [mm]\summe_{k=2}^{\infty} \frac{(-3)^k}{k}(x+1)^k[/mm]
>  und
> bestimmen Sie für jedes x [mm]\in \IR[/mm] mit x + 1 [mm]\in[/mm] (−R, R)
> den Reihenwert.
>  
> Hallo!
>  
> Ich habe eine Frage zum zweiten Aufgabenteil. Im
> Lösungsvorschlag steht, dass man die Reihe zur Funktion
> p(x) machen kann. Dann ist ja:
>  
> p'(x) = [mm]\summe_{k=2}^{\infty} (-3)^k(x+1)^{k-1}[/mm]
>  = (-3)
> [mm]\summe_{k=1}^{\infty} (-3)^k(x+1)^{k}[/mm]
>  
> gemoetrische Reihe für |3x+3| < 1:
>  
> p'(x) = -3 [mm]\left( \frac{1}{1+(3x+3)} \right)[/mm] = 3 [mm]\left( \frac{3x+3}{3x+4} \right)[/mm]
> = 3 [mm]\left( 1 - \frac{1}{3x+4} \right)[/mm]
>  
> Ich hätte jetzt so weiter gemacht: Das ganze integrieren,
> um nochmal auf p(x) zu kommen und dann c berechnen.
>  
> Also:
>  p(x) = 3 [mm]\integral{1 dx}[/mm] - [mm]\integral{\frac{3}{3x+4} dx}[/mm] =
> 3x - [mm]\ln(3x+4)[/mm] + c
>  
> Im Lösungsvorschlag steht aber:
>  p(x) = 3 [mm]\integral_{-1}^{x}{1 dt}[/mm] -
> [mm]\integral_{-1}^{x}{\frac{3}{3t+4} dt}[/mm]
>  
> Wie man dann weiter rechnet, ist mir klar - und dass das
> Ergebnis richtig ist, auch. Ich verstehe aber einfach
> nicht, warum man hier jetzt Grenzen in das Integral
> einsetzen muss. Und warum gerade -1 und x?

Weil $p(-1)=0$ ist und

  [mm] \integral_{-1}^x p'(t) dt = p(x) -p(-1) = p(x) [/mm] .

  Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de