www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Rekonstruktion/Fläche/Länge
Rekonstruktion/Fläche/Länge < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktion/Fläche/Länge: vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 11:19 So 20.03.2011
Autor: Muellermilch

Hallo :)

Mir ist eine Hängebrücke gegeben, die von zwei Stahlseilen getragen wird, die parabelförmig zwischen den Pylonen verlaufen. 8 Tragseile auf jeder Seite tragen die eigentliche Fahrbahn.

[Dateianhang nicht öffentlich]

Zunächst soll ich das vordere Stahlseil (In der Abb. rosa ) durch eine quadratische Funktion darstellen.

Dann soll ich bestimmen, wie lang die 8 Tragseile, die am vorderen Stahlseil hängen sind.

Dann muss ich noch den Flächeninhalt bestimmen, den die 4 Werbeverkleidungen (grün) zwischen den Tragseilen haben.

1 LE = 10m
Erstmal zu der Rekonstruktion der Funktion:
1. f(x) = [mm] ax^{2} [/mm] + bx + c
2. Die Funktion hat keine Nullstellen -> a muss positiv sein
3. Der y-Achsenabschnitt liegt bei 2 -> f(x)= [mm] ax^{2}+bx+20 [/mm] ?

- Wie muss ich hier nun fortsetzen?


Gruß,
Muellermilch


Dateianhänge:
Anhang Nr. 1 (Typ: tiff) [nicht öffentlich]
        
Bezug
Rekonstruktion/Fläche/Länge: Funktion ermitteln
Status: (Antwort) fertig Status 
Datum: 12:07 So 20.03.2011
Autor: Loddar

Hallo Müllermilch!


Es ist geschickter, zur Funktionsermittlung den Koordinatenursprung in die Mitte der Brücke zu verlegen (dort wo bei Dir die 5 steht).
Dann kannst Du die Achsensymmetrie ausnutzen und es verbleibt als allgemeiner Funktionsterm:

[mm]f(x) \ = \ a*x^2+c[/mm]

Nun kennst Du die Werte [mm]f(-50) \ = \ f(+50) \ = \ 20[/mm] sowie [mm]f(0) \ = \ 10[/mm] .
Damit lassen sich nun [mm]a_[/mm] und [mm]c_[/mm] ermitteln.


Gruß
Loddar


Bezug
                
Bezug
Rekonstruktion/Fläche/Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 So 20.03.2011
Autor: Muellermilch


> Hallo Müllermilch!
>  
>
> Es ist geschickter, zur Funktionsermittlung den
> Koordinatenursprung in die Mitte der Brücke zu verlegen
> (dort wo bei Dir die 5 steht).
>  Dann kannst Du die Achsensymmetrie ausnutzen und es
> verbleibt als allgemeiner Funktionsterm:
>  
> [mm]f(x) \ = \ a*x^2+c[/mm]

warum ist das bx jetzt weggefallen?

>  
> Nun kennst Du die Werte [mm]f(-50) \ = \ f(+50) \ = \ 20[/mm] sowie
> [mm]f(0) \ = \ 10[/mm] .
>  Damit lassen sich nun [mm]a_[/mm] und [mm]c_[/mm] ermitteln.

ok. dann habe ich :
f(x)= [mm] ax^{2} [/mm] + 10

und dann f(x)= [mm] a*50^{2} [/mm] + 10 = 20

2500a = 10
a = [mm] \bruch{1}{250} [/mm]

=> f(x)= [mm] \bruch{1}{250}x^{2} [/mm] + 10

So richtig? :)

Gruß,
Muellermilch

>  


Bezug
                        
Bezug
Rekonstruktion/Fläche/Länge: Achsensymmetrie
Status: (Antwort) fertig Status 
Datum: 12:38 So 20.03.2011
Autor: Loddar

Hallo Müllermilch!


> > [mm]f(x) \ = \ a*x^2+c[/mm]
>  
> warum ist das bx jetzt weggefallen?

Wie ich oben bereits schrieb: die Funktion ist bei dieser Wahl des Koordinatensystems achsensymmetrisch zur y-Achse und hat daher nur noch gerade x-Potenzen.


> => f(x)= [mm]\bruch{1}{250}x^{2}[/mm] + 10
>  
> So richtig? :)

[ok]


Gruß
Loddar


Bezug
        
Bezug
Rekonstruktion/Fläche/Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 So 20.03.2011
Autor: Muellermilch


> Hallo :)
>  
> Mir ist eine Hängebrücke gegeben, die von zwei
> Stahlseilen getragen wird, die parabelförmig zwischen den
> Pylonen verlaufen. 8 Tragseile auf jeder Seite tragen die
> eigentliche Fahrbahn.
>  
> [Dateianhang nicht öffentlich]
>  
> Zunächst soll ich das vordere Stahlseil (In der Abb. rosa
> ) durch eine quadratische Funktion darstellen.

So, das ist ja dank Loddars Hilfe schon fertig :)

f(x)= [mm] \bruch{1}{250}x^{2}+10 [/mm]

> Dann soll ich bestimmen, wie lang die 8 Tragseile, die am
> vorderen Stahlseil hängen sind.

Hier muss ich einfach nur die x Werte in die Funktionsgleichung einsetzen oder?
Also 1.Tragseil hat ja den x-wert bei 1 bzw 10 (1 LE=10m):
-> f(10)= 10,4
Also ist das erste Tragseil 10,4 m lang. Richtig? :)

> Dann muss ich noch den Flächeninhalt bestimmen, den die 4
> Werbeverkleidungen (grün) zwischen den Tragseilen haben.

Hier muss ich doch das Integral zwischen den gegebenen Grezen berechnen oder? Also z.b. bei der 1.fläche: da haben wir die Grenzen 1 und 2. Also ingeral von 1 bis 2 für f(x)dx berechnen. ..stammfunktion und so.. ?
Und die weiteren Flächen genauso.

> 1 LE = 10m
>  Erstmal zu der Rekonstruktion der Funktion:
>  1. f(x) = [mm]ax^{2}[/mm] + bx + c
>  2. Die Funktion hat keine Nullstellen -> a muss positiv

> sein
>  3. Der y-Achsenabschnitt liegt bei 2 -> f(x)= [mm]ax^{2}+bx+20[/mm]

> ?
>  
> - Wie muss ich hier nun fortsetzen?
>  
>

Gruß,
Muellermilch

>  


Bezug
                
Bezug
Rekonstruktion/Fläche/Länge: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:51 So 20.03.2011
Autor: Loddar

Hallo Müllermilch!


> > Dann soll ich bestimmen, wie lang die 8 Tragseile, die am
> > vorderen Stahlseil hängen sind.
>  
> Hier muss ich einfach nur die x Werte in die
> Funktionsgleichung einsetzen oder?

[ok]


>  Also 1.Tragseil hat ja den x-wert bei 1 bzw 10 (1
> LE=10m):
>  -> f(10)= 10,4

>  Also ist das erste Tragseil 10,4 m lang. Richtig? :)

[ok] Das sind jeweils die ersten Seile (vom Koordinatenursprung gesehen).



> > Dann muss ich noch den Flächeninhalt bestimmen, den die 4
> > Werbeverkleidungen (grün) zwischen den Tragseilen haben.
>  Hier muss ich doch das Integral zwischen den gegebenen
> Grezen berechnen oder? Also z.b. bei der 1.fläche: da
> haben wir die Grenzen 1 und 2. Also ingeral von 1 bis 2
> für f(x)dx berechnen. ..stammfunktion und so.. ?
>  Und die weiteren Flächen genauso.

[ok] Grundsätzlich ja. Aber du musst schon die "größeren" Werte als Grenzen einsetzen mit [mm]x_1 \ = \ 1\red{0}[/mm] bzw. [mm]x_2 \ = \ 2\red{0}[/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de