www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Rekonstruktion einer Funktion
Rekonstruktion einer Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktion einer Funktion: DRINGEND: Frage
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 07.11.2005
Autor: Claudinchen

Hallo,

ich habe Grundkurs Mathematik, 12. Klasse und folgende Aufgabe zu lösen:

Eine quadratische Parabel schneidet die y-Achse bei -1 und nimmt ihr Minimum bei x = 4 ein. Im 4. Quadranten liegt unterhalb der x-Achse über dem Intervall [0;1] ein Flächenstück A zwischen der Parabel und der x-Achse, dessen Inhalt 11 beträgt.
Um welche Kurve handelt es sich?

Dem Text konnte ich entnehmen, dass es sich um eine allgemeine Funktion mit f(x)=ax² + bx + c handelt.
c = -1, da sie die y-Achse bei -1 schneidet.
Minimum bedeutet ja Tiefpunkt, der also bei x = 4 liegt. Ich war letztes Jahr im Ausland und weiß daher nicht, wie ich nun mit Hilfe des Tiefpunktes a und b errechnen soll. Muss ich die erste Ableitung bilden?

Dies wäre dann
f'(x)= 2ax + b + 0
f'(4)= 8a + b

Ist das soweit richtig oder völlig falsch? Wie muss ich weiter vorgehen??

Vielen Dank im Voraus!

MfG
Claudia

        
Bezug
Rekonstruktion einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 07.11.2005
Autor: Zwerglein

Hi, Claudinchen,

> Eine quadratische Parabel schneidet die y-Achse bei -1 und
> nimmt ihr Minimum bei x = 4 ein. Im 4. Quadranten liegt
> unterhalb der x-Achse über dem Intervall [0;1] ein
> Flächenstück A zwischen der Parabel und der x-Achse, dessen
> Inhalt 11 beträgt.

> Dem Text konnte ich entnehmen, dass es sich um eine
> allgemeine Funktion mit f(x)=ax² + bx + c handelt.

OK!

>  c = -1, da sie die y-Achse bei -1 schneidet.

Auch richtig!

>  Minimum bedeutet ja Tiefpunkt, der also bei x = 4 liegt.
> Ich war letztes Jahr im Ausland und weiß daher nicht, wie
> ich nun mit Hilfe des Tiefpunktes a und b errechnen soll.
> Muss ich die erste Ableitung bilden?
>  
> Dies wäre dann
>  f'(x)= 2ax + b + 0
>  f'(4)= 8a + b
>  
> Ist das soweit richtig oder völlig falsch? Wie muss ich
> weiter vorgehen??

Ist wieder richtig! Nennen wir die Gleichung 8a + b = 0 einfach mal "(I)"

Fehlt nur noch die Sache mit der Fläche:

[mm] \integral_{0}^{1} {(ax^{2}+bx-1)dx} [/mm] = -11
(Minus deshalb, weil die Fläche ja im 4.Quadranten, also unterhalb der x-Achse liegen soll!)

Aus diesem Ansatz kriegst Du nun eine weitere Gleichung (Gleichung (II))
in a und b, sodass Du mit Hilfe von (I) die beiden Zahlen ausrechnen kannst.

Probier's und frag' nach, wenn irgendwas nicht hinhaut!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de