www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Rekonstruktion von Funktionen
Rekonstruktion von Funktionen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktion von Funktionen: Idee
Status: (Frage) beantwortet Status 
Datum: 10:59 So 11.06.2006
Autor: Devon

Aufgabe
Welche ganzrationale Funktion 3.Grades hat eine Nullstelle bei x=0, ein lokales Maximum in Pmax(-1/5) und eine Wendestelle bei xw=1?

Hey Leute, also ich komme mit dieser aufgabe nich klar.. Ich weiß das ich die 4 Gleichungen erstellen muss und das is immer mein Problem. Ich weiß nich welche Kriterien für welche Ableitung eingesetzt werden.. Könnt ihr mir da einen Ansatz geben?
Was ich weiß is Nullstelle x=0 bedeutet f(1)=0 oder? THX for help..

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rekonstruktion von Funktionen: Bestimmungsgleichungen
Status: (Antwort) fertig Status 
Datum: 11:21 So 11.06.2006
Autor: Loddar

Hallo Devon,

[willkommenmr] !!


Zunächst einmal schreiben wir uns die allgemeine Funktion 3. Grades auf:

$f(x) \ = \ [mm] a*x^3+b*x^2+c*x+d$ [/mm]

Dazu nun auch die ersten beiden Ableitungen:

$f'(x) \ = \ [mm] 3a*x^2+2b*x+c$ [/mm]
$f''(x) \ = \ 6a*x+2b$


Und nun versuchen wir uns aus den gegebenen Informationen die Bestimmungsgleichungen aufzustellen:


•  Nullstelle bei [mm] $x=\red{0}$ $\Rightarrow$ $f(\red{0}) [/mm] \ = \ [mm] a*\red{0}^3+b*\red{0}*^2+c*\red{0}+d [/mm] \ = \ d \ = \ 0$


•  Punkt [mm] $P_{\max} [/mm] \ ( \ [mm] \red{-1} [/mm] | \ [mm] \blue{5} [/mm] \ )$    [mm] $\Rightarrow$ $f(\red{-1}) [/mm] \ = \ [mm] a*(\red{-1})^3+b*(\red{-1})^2+c*(\red{-1})+d [/mm] \ = \ -a+b-c+d \ = \ [mm] \blue{5}$ [/mm]


•  ein lokales Maximum in [mm] $P_{\max} [/mm] \ ( \ [mm] \red{-1} [/mm] \ |  \ 5 \ )$    [mm] $\Rightarrow$ $f'(\red{-1}) [/mm] \ = \ [mm] 3a*(\red{-1})^2+2b*(\red{-1})+c [/mm] \ = \ 3a-2b+c \ = \ 0$


•  Wendestelle bei [mm] $x_w=\red{1}$ $\Rightarrow$ $f''(x_w) [/mm] \ = \ [mm] f''(\red{1}) [/mm] \ = \ [mm] 6a*\red{1}+2b [/mm] \ = \ 6a+2b \ = \ 0$



Siehe auch mal in unserer MatheBank unter MBSteckbriefaufgaben .


Gruß
Loddar


Bezug
                
Bezug
Rekonstruktion von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 So 11.06.2006
Autor: Devon

Ahh.. Das hat mir doch schon mal sehr weiter geholfen, danke ;) Jetzt habe ich ja die 4 Gleichungen und setzte diese dann ineinander ein, damit ich die einzelnen Variablen erhalte?!

Bezug
                        
Bezug
Rekonstruktion von Funktionen: Genau!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 So 11.06.2006
Autor: Loddar

Hallo Devon!


> Jetzt habe ich ja die 4 Gleichungen und setzte
> diese dann ineinander ein, damit ich die einzelnen
> Variablen erhalte?!

[ok] Ganz genau!


Gruß
Loddar



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de